Facility location problems in the read-only memory with constant work-space

Subhas C. Nandy

Indian Statistical Institute, Kolkata, India

with
Binay K. Bhattacharya, Minati De and Sasanka Roy
Table of Contents

1 Euclidean 1-center
 • Introduction
 • Megiddo’s Algorithm for Constrained-MEC
 • Constrained-MEC using constant space
 • Megiddo’s Algorithm for MEC
 • MEC using constant space

2 Facility location in tree network
 • Centroid of a Tree
 • Weighted 1-center of a Tree

3 Open Problems
Euclidean 1-center

Input
A set of \(n \) points \(P \) in \(\mathbb{R}^2 \)

Objective
- Find \(c^* \in \mathbb{R}^2 \) such that
 \[
 \max_{x \in P} d(c^*, x) = \min_{c \in \mathbb{R}^2} \max_{x \in P} d(c, x)
 \]
Euclidean 1-center

Input

A set of n points P in \mathbb{R}^2

Objective

- Find $c^* \in \mathbb{R}^2$ such that
 \[
 \max_{x \in P} d(c^*, x) = \min_{c \in \mathbb{R}^2} \max_{x \in P} d(c, x)
 \]
- Compute the center c^* of the Minimum Enclosing Circle (MEC)
Literature

- Proposed by Sylvester, 1857
- Using FVD takes $O(n \log n)$ time
- $O(n)$ time and $O(n)$ space, Megiddo, 1983
- $O(n^2)$ time $O(1)$ space in Read-only model, by Asano, Mulzer, Rote and Wang, 2011

Open Problem

Any sub-quadratic time algorithm in read-only model using constant space?
Introduction
Megiddo’s Algorithm for Constrained-MEC
Constrained-MEC using constant space
Megiddo’s Algorithm for MEC
MEC using constant space

Literature

Open Problem
Any sub-quadratic time algorithm in read-only model using constant space?

Our Contribution

- In-place algorithm: $O(n)$ time and $O(1)$ extra space
- Read-only Model: $O(n^{1+\epsilon})$ time and $O(\frac{1}{\epsilon} \log n)$ space, where ϵ is a positive constant less than 1

Appeared in FSTTCS 2012
Open Problem

Any sub-quadratic time algorithm in read-only model using constant space?

Here we present

- **Read-only Model:** $O((n + M) \log^4 n)$ time using $O(1)$ space, where M is the time to compute median using $O(1)$ spacea.

aKnown lower bound of M by T.M. Chan (SODA, 2009): $\Omega(n \log \log S \ n)$ time using $O(S)$ bits
Read-only Model

- **Input**: Read-only
- **Constraints during Execution**:
 - Limited space for storing temporary results
- **After Execution**:
 - Desired result will be reported
Constant-work-space Read-only Model

Advantages

- Less prone to failure
- Secured
- Multiple process can access same data simultaneously
- Can handle big data
Example

Sorting: An $O(n^2)$ time

- Find the maximum and report
- Find the 2nd maximum and report
-
- Find the smallest and report
Fundamental Algorithms

Sorting

- $O\left(\frac{n^2}{s} + n \log s\right)$ time and $O(s)$ extra-space (by Frederickson, 1987)

- **Time-space product lower bound:** $\Omega(n^2)$ (by Borodin, 1981)

Selection

- $O(n \log^3 n)$ time algorithm using $O(1)$ space (by Munro and Paterson, 1978)

- $O(n^{1+\epsilon})$ time and $O\left(\frac{1}{\epsilon}\right)$ extra-space (by Munro and Raman, 1996)

- **Lower bound:** $\Omega(n \log \log S \cdot n)$ time using $O(S)$ bits (by T.M. Chan, 2009)
Constrained MEC

Input
- A set of n points P in \mathbb{R}^2
- A vertical line L
Constrained MEC

Input
- A set of n points P in \mathbb{R}^2
- A vertical line L

Objective
- Compute the Minimum Enclosing Circle whose center m^* lies on L
Constrained MEC
Constrained MEC

Arbitrarily pair-up the points
Constrained MEC

Draw the perpendicular bisectors
Constrained MEC

Observe the intersection points on the line L
Constrained MEC

Find the median(m) of the intersection points
Constrained MEC

Find farthest point(s) from m
Constrained MEC

Farthest points are both above and below of m

$\rightarrow m$ is the result
Constrained MEC

All farthest points are in same side of \(m \)
Constrained MEC

Prune $\frac{1}{4}$th points
Constrained MEC

Repeat same for the rest of the points
Constrained MEC

begin
while $|P| \geq 4$ do

Arbitrarily pair up the points in P. Let

$PAIR = \{(P[2i - 1], P[2i]), i = 1, 2, \ldots, \lfloor \frac{|P|}{2} \rfloor\}$ be the set of aforesaid disjoint pairs;

INTERMEDIATE-COMPUTATION-for-Constrained-MEC; (*
It returns a point m on L and a side D *)

(* Pruning step *)
forall the pair of points $(P[2i], P[2i + 1]) \in PAIR$ do

if The bisector line L_i defined by the pair
$(P[2i], P[2i + 1])$ intersect to the opposite side of D
from m

then

Discard one of $P[2i]$ and $P[2i + 1]$ from P which lies
on the side of m with respect to the bisector line L_i;

(* Finally, when $|P| < 4$ *) compute the constrained MEC in
brute force manner and decide on which side of L the center of
unconstrained MEC lies.
Constrained MEC

How to keep track the pruned elements?

- pair and the feasible region
Dominance Relation

Definition
For a pair of points $p, q \in P$, p is said to dominate q with respect to a feasible region U, if their perpendicular bisector $b(p, q)$ does not intersect the feasible region U, and both q and U lie on the same side of $b(p, q)$.
Dominance Relation

Property

\(p \) dominates \(q \) with respect to a feasible region \(U \) if and only if from any point \(x \in U \),
\[d(p, x) > d(q, x). \]
Dominance Relation

Lemma

If p dominates q and q dominates r with respect to a feasible region U, then p dominates r with respect to the feasible region U.

Proof.

$x \in U$, $d(p, x) > d(q, x)$ and $d(q, x) > d(r, x) \Rightarrow d(p, x) > d(r, x)$
Pairing Scheme

Input Array: $P[]$

The feasible region $U = [a, b]$ on L
Pairing Scheme

Input Array: $P[]$

The feasible region $U = [a, b]$ on L
The feasible region
\[U = [a, b] \text{ on } L \]
Pairing Scheme

Input Array: $P[]$

The feasible region $U = [a, b]$ on L
Pairing Scheme

At the beginning of k-th phase

- $U = [a, b]$
- only one element is valid (i.e dominant) from each block of consecutive 2^{k-1} elements, namely

 $$B^k_i = P[i.2^{k-1} + 1, i.2^{k-1} + 2, \ldots, (i + 1).2^{k-1}],$$

 $i = 1, 2, \ldots, \left\lceil \frac{n}{2^{k-1}} \right\rceil$.
- We refer the only valid element of B^k_i as $\text{valid}(B^k_i)$
Pairing Scheme

At the end of k-th phase

- $U = [a, b]$ (modified)
- only one element is valid (i.e dominant) from each block of consecutive 2^k elements, namely
 $$B_{i}^{k+1} = P[i.2^k + 1, i.2^k + 2, \ldots, (i + 1).2^k], \ i = 1, 2, \ldots, \left\lceil \frac{n}{2^k} \right\rceil.$$
Pairing Scheme

Formed-Pair in the k-th phase

$\text{valid}(B_{2i-1}^k)$ and $\text{valid}(B_{2i}^k)$ form a pair $Pair_i^k$ for $i = 1, 2, \ldots, \left\lceil \frac{n}{2^{k-1}} \right\rceil$

Valid Pair

A pair $Pair_i^k$ is valid pair with respect to $U = [a, b]$ if the corresponding perpendicular bisector intersects $[a, b]$ on L.
In the k-th phase

Recognize the only valid element from a block B^k_i

Lemma

Let $p, q \in B^k_i$ having perpendicular bisector $b(p, q)$, then any one of the following happens

- *If $b(p, q)$ intersects outside $[a, b]$ on L, then one of p, q is not valid(B^k_i).*
- *If $b(p, q)$ intersects $[a, b]$ on L, then none of p and q are valid(B^k_i).*
In the k-th phase

Recognize the valid element from a block B^k_i
In the k-th phase

Recognize the valid element from a block B_i^k
In the k-th phase

Recognize the valid element from a block B_i^k
In the k-th phase

Recognize the valid element from a block B_i^k
In the k-th phase

Recognize the valid element from a block B_i^k
In the k-th phase

Recognize the valid element from a block B_i^k

The $\text{valid}(B_i^k)$ can be identified in $O(|B_i^k|)$ time using $O(1)$ extra-space.

Lemma

We can enumerate all the valid elements of k-th phase in $O(n)$ time using $O(1)$ extra-space.
In the k-th phase

In an iteration

- Consider the intersection points on L of the perpendicular bisectors of the valid pairs
- Find the median m among these intersection points
- Decide on which side of m the m^* lies and update U
In the k-th phase

In an iteration

- Consider the intersection points on L of the perpendicular bisectors of the valid pairs
- Find the median m among these intersection points
- Decide on which side of m the m^* lies and update U

After this iteration

Number of valid pairs decreases by $\frac{1}{4}$
In the k-th phase

In an iteration

- Consider the intersection points on L of the perpendicular bisectors of the valid pairs
- Find the median m among these intersection points
- Decide on which side of m the m^* lies and update U

After at most $\log n$ iterations, none of $Pair_i^k$ are valid pairs, where $i = 1, 2, \ldots, \left\lceil \frac{n}{2^{k-1}} \right\rceil$
Lemma

The Constrained-MEC can be computed in $O((n + M) \log^2 n)$ time using $O(1)$ extra-space, where M is the time needed to compute the median of n elements in read-only memory when $O(1)$ space is provided.
Megiddo’s Algorithm for MEC
Megiddo’s Algorithm for MEC

Arbitrarily pair up the points
Megiddo’s Algorithm for MEC

Consider their perpendicular bisectors and find the median slope S_m
Megiddo’s Algorithm for MEC

Pair up the bisector L_i, L_j such that $\text{slope}(L_i) < S_m < \text{slope}(L_j)$
Megiddo’s Algorithm for MEC

Consider the intersection points of the paired bisectors (tuple)
Megiddo’s Algorithm for MEC

Find their median x-coordinate and evoke Decide-on-a-Line
Megiddo’s Algorithm for MEC

Find median y-coordinate and evoke Decide-on-a-Line
Megiddo’s Algorithm for MEC

Prune $\frac{n}{16}$ elements
Megiddo’s Algorithm for MEC

Algorithm 1: MEC(P)

Input: An array \(P[1, \ldots, n] \) containing a set \(P \) of \(n \) points in \(\mathbb{R}^2 \).

Output: The center \(\pi^* \) of the minimum enclosing circle of the points in \(P \).

```
begin
while \(|P| \geq 16\) do
  Arbitrarily pair up the points in \( P \). Let \( PAIR = \{(P[2i-1], P[2i]), i = 1, 2, \ldots, \lfloor |P|/2 \rfloor\} \) be the set of aforesaid disjoint pairs;
  Intermediate-Computation-for-MEC; (It returns a quadrant \( Quad \) defined by two orthogonal lines \( L_H \) & \( L_V \))
  (* Pruning step *)
  forall the pair of points \((P[2i], P[2i+1])\) \(\in PAIR\) do
    if The bisector line \( L_i \) defined by the pair \((P[2i], P[2i+1])\) does not intersect the quadrant \( Quad \) then
      Discard one of \( P[2i] \) and \( P[2i+1] \) from \( P \) which lies on the side of the quadrant \( Quad \) with respect to the bisector line \( L_i \);
  (* Finally, when \(|P| < 16\) *) compute by brute force manner.
end
```
Decide-on-a-Line using constant space

Find the Constrained-MEC center m^*
Decide-on-a-Line using constant space

Find all the farthest points F
Decide-on-a-Line using constant space

Convex hull of F contains m^*
Decide-on-a-Line using constant space

Convex hull of F does not contain m^*
Decide-on-a-Line using constant space

Lemma

Decide-on-a-Line(L) can be computed in $O((n + M) \log^2 n)$ time using $O(1)$ extra-space, where M is the time needed to compute the median of n elements given in a read-only memory using $O(1)$ extra-space.
MEC using constant space

How to keep track of the pruned elements?

Intersection of Feasible Region U
How to keep track of the pruned elements?

Intersection of Feasible Region U
How to keep track of the pruned elements?

Intersection of Feasible Region U
Intersection of Feasible Region U of constant complexity

After each iteration we will keep a feasible triangle
Intersection of Feasible Region U of constant complexity

After each iteration we will keep a feasible triangle
Intersection of Feasible Region U of constant complexity

After each iteration we will keep a feasible triangle
Intersection of Feasible Region U of constant complexity

After each iteration we will keep a feasible triangle
Intersection of Feasible Region U of constant complexity

After each iteration we will keep a feasible triangle
Intersection of Feasible Region U of constant complexity

After each iteration we will keep a feasible triangle
Time and Space Complexity

Single iteration

Evokes at most four Constrained MEC

Theorem

The Euclidean 1-center of a set of points in \(\mathbb{R}^2 \) given in a read-only array can be found in \(O((n + M) \log^4 n) \) time using \(O(1) \) extra-space, where \(M \) is the time needed to compute the median of \(n \) elements in read-only memory when \(O(1) \) space is provided.
Similar prune-and-search algorithm

Linear programming in \mathbb{R}^3

\[
\begin{align*}
\min_{x_1, x_2, x_3} & \quad d_1 x_1 + d_2 x_2 + d_3 x_3 \\
\text{subject to:} & \quad a'_i x_1 + b'_i x_2 + c'_i x_3 \geq \beta_i, \ i \in I = \{1, 2, \ldots n\}.
\end{align*}
\]

can be computed in $O((n + M) \log^4 n)$ time using $O(1)$ extra-space, where M is the time needed to compute the median of n elements in read-only memory when $O(1)$ space is provided.
Table of Contents

1 Euclidean 1-center
 • Introduction
 • Megiddo’s Algorithm for Constrained-MEC
 • Constrained-MEC using constant space
 • Megiddo’s Algorithm for MEC
 • MEC using constant space

2 Facility location in tree network
 • Centroid of a Tree
 • Weighted 1-center of a Tree

3 Open Problems
Centroid of a Tree

Centroid of a tree

A vertex \(v \) of the tree \(T \) such that the size of the largest subtree of \(v \) is minimum among all vertices of \(T \).

Available Results

- Can be computed in \(O(n) \) time using \(O(n) \) space.
- In read-only environment, it is easy to compute in \(O(n^2) \) time using \(O(1) \) extra space.

Our Result

- A linear time algorithm using \(O(1) \) extra space in read-only environment.
Centroid of a Tree

Data Structure

The tree T is stored as a DCEL in read-only memory, such that for each vertex v the following operations can be performed in $O(1)$ time.

- Parent(v)
- FirstChild(v)
- NextChild(u, v) - Child of u which is next to v

We use $T_m(t)$: the subtree of the node t rooted at one of its neighbors m.
Centroid of a Tree

Algorithm

1. Start from an arbitrary vertex \(t \in V \)
2. Compute a neighbor \(m \) of \(t \) having maximum number of nodes in the subtree \(T_m(t) \).
3. If \(|T_m(t)| \leq \lceil \frac{n}{2} \rceil \), then report \(t \) as the centroid. Otherwise, the centroid lies in \(T_m(t) \).
Centroid of a Tree

We now concentrate of Step 2 of the algorithm.

Invariant

Maintain three variables t, t' and Size satisfying

- Initially $t = \text{root}$, $t' = \emptyset$ and $\text{Size} = 0$
- If $t' \neq \emptyset$ then t and t' are adjacent vertices and $\text{Size} = |T_{t'}(t)|$.

Note: During the search t' is the parent of t
Centroid of a Tree

Compute m such that $|T_m(t)| = \max_{v \in N(t)} |T_v(t)|$ as follows:

- Initially, t' is the predecessor of t, $\text{Size} = |T_{t'}(t)|$, and $\text{SIZE} = \text{MaxSize} = |T_t(t')|$ computed in the earlier step.
- Use two pointers ϕ_1 and ϕ_2 to count the size of two subtrees of T in a parallel manner.
- Use the procedures $\text{Parent}(u)$, $\text{FirstChild}(u)$ and $\text{NextChild}(u, v)$ to compute the size of the subtrees pointed by ϕ_1 and ϕ_2.
Centroid of a Tree

- When the counting of a pointer in one subtree is finished, it starts with an unprocessed subtree immediately.
- Each time, when the counting of a subtree by one of the pointers is finished, the count is added in a counter $TOTAL$.
- When the task of one of the pointers is finished, and it does not find any unprocessed subtree of T, then the process stops without completing the task of the other pointer in which it was working.
- Its count is available by computing $SIZE - TOTAL$.

During this process
the node $m \in N(t)$ having maximum $|T_m(t)|$, and $MaxSize = |T_m(t)|$ is maintained.
Centroid of a Tree

- If \(\text{MaxSize} \leq \left\lfloor \frac{n}{2} \right\rfloor \), report \(m \) as centroid.
- Else recurse with \(t' = t \), \(t = m \), \(\text{Size} = n - \text{MaxSize} \) and \(\text{SIZE} = \text{MaxSize} \).

The recursion continues in the subtrees rooted at \(m \). One of its neighbors is \(t \), whose elements are already visited in the previous iteration, and the count is \(T_m(t) \).
Centroid of a Tree

Result

- In each iteration, at most half of the elements of T are visited by each of ϕ_1 and ϕ_2.
- In an iteration, either answer is reported; or the process starts with the unfinished subtree, which is of largest size among the subtrees of t.
- The total time complexity of an iteration is $2 \times Size$.
- Since in each iteration, a unfinished subtree is processed, the charge goes to the subtrees which are completely processed.
- Thus, the total time complexity becomes $O(n)$.
Given a tree T having each vertex attached with positive weights, a point π on an edge e^* of T is said to be the weighted 1-center if

$$\Delta_w(\pi) = \min_{p \in T} \Delta_w(p)$$

where $\Delta_w(p) = \max_{v \in V} w(v) \times d(p, v)$, and $d(p, v)$ is the distance of the vertex v from the point p along the edges of T.
Weighted 1-center of a Tree

Overview of the Algorithm

- Identify an edge e^* on which the 1-center lies
- Next, compute the point π (1-center) on e^*.

An important result

- If u is a fixed vertex in T, and
- v' be a vertex in T satisfying $w(v')d(v', u) = \max_{v \in V} w(v)d(v, u)$ that lies in $T_t(u)$, then
- the 1-center of T lies in $T_t(u^+)$.

Here $T_t(u^+)$ is the subtree of T containing $T_t(u) \cup \{u\} \cup \{(u, t)\}$.
Finding e^*

1. Initialize $T' = T$.
2. Repeat the following steps until T' is an edge.
 - Compute the centroid in T'. Let it be u.
 - Identify the vertex v' traversing all the subtrees of u in the tree T completely.
 - Suppose $v' \in T_t(u)$. Set $T' = T'_t(u^+)$.
Finding e^*

- Since, in each iteration, half of the vertices are pruned, to set T', the number of iteration is $O(\log n)$.
- In order to compute v', the entire tree T is scanned. Thus, the time complexity of each iteration is $O(n)$.

Result

The overall time complexity of identifying e^* is $O(n \log n)$. The space complexity is $O(1)$.

An important property

At most two internal vertices of T become the leaves of T'. This enables us to encode T' using only four variables.
Computing the 1-center on the edge \(e^* = [u^*, v^*] \)

Query(\(m \)) — for a query point \(m \in e^* \)

Test whether \(\pi = m \) or \(\pi \in [u^*, m] \) or \(\pi \in [m, v^*] \).

Process

- For a point \(x \in [a, b] \), define
 \[
 f_1(x, v) = w(v) \times (d(u^*, v) + d(x, u^*)) \quad \text{for all } v \in T_u^*(v^*),
 \]
 \[
 f_2(x, v) = w(v) \times (d(v^*, v) + d(x, v^*)) \quad \text{for all } v \in T_v^*(u^*).
 \]

- Find \(f_1(k_1, m) = \max_{v \in T_u^*(v^*)} f_1(m, v) \), and \(f_2(k_2, m) = \max_{v \in T_v^*(u^*)} f_1(m, v) \).

- If \(f_1(k_1, m) = f_2(k_2, m) \), then \(\pi = m \)
 Else if \(f_1(k_1, m) > f_2(k_2, m) \) then \(\pi \in [a, m] \), else \(\pi \in [m, b] \).

Time complexity of Query(\(m \)): \(O(n) \)
Computing m

Dominance

For a pair of vertices $p, q \in T_{u^*}(v^*)$, p dominates q if $f_1(p, x)$ and $f_1(q, x)$ do not intersect in $[a, b]$, and $f_1(q, x) < f_1(p, x)$.
Computing m

Process

- Pair up vertices of $V_1 = T_{u^*}(v^*)$.
- If one of them dominates the other, then prune the dominated one.
 Otherwise compute the point of intersection $x \in [a, b]$ of $f_1(p, x)$ and $f_1(q, x)$.
- Similarly, pair up vertices of $V_2 = T_{v^*}(u^*)$, and compute the point of intersection of $f_1(p, x)$ and $f_1(q, x)$ for the undominated pairs $(p, q) \in V_2$.
- Compute the median m of these intersection points in read-only memory.
Complexity

Result

Time complexity: $O((n + M) \log^2 n)$, and
Space: $O(1)$, where M is the time needed for computing the median of n elements in read-only environment using $O(1)$ space.
Table of Contents

1 Euclidean 1-center
 • Introduction
 • Megiddo’s Algorithm for Constrained-MEC
 • Constrained-MEC using constant space
 • Megiddo’s Algorithm for MEC
 • MEC using constant space

2 Facility location in tree network
 • Centroid of a Tree
 • Weighted 1-center of a Tree

3 Open Problems
Open Problem

Farthest Pair of Points

Given a set P of n points in \mathbb{R}^2, find the farthest pair of points in sub-quadratic time in the constant-work-space read-only model.

Maximum Empty Circle

Given a set P of n points in \mathbb{R}^2, find the maximum empty circle (whose center is inside the convex hull of P) in sub-quadratic time in the constant-work-space read-only model.
Thank You!