Some Improved Bounds on Small Strong ϵ-Nets

Snehasish Mukherjee
M.Tech (CS), Year I
Indian Statistical Institute, Kolkata
Email: mtc1010@isical.ac.in

Aniket Basu Roy
M.Tech (CS), Year I
Indian Statistical Institute, Kolkata
Email: mtc1006@isical.ac.in

Abstract—In this paper we present some new constructions of small strong ϵ-nets for rectangles, strips and wedges based on simple geometric arguments. For rectangular range spaces we improve upon the earlier known bound on ϵ for net set size of 2. For strips and wedges for which only lower bounds were known, we bound ϵ from above for net set sizes of 2, 3 and 4. Further, we show that the net constructed for strips are also nets for wedges for net size of 3 and 4.

I. INTRODUCTION

The concept of ϵ-net was introduced by Haussler and Welzel in [1] and has since found many applications in computational geometry, approximation algorithms, learning theory etc. An ϵ-net for the geometric set system (X,F), where X is a finite set of points in \mathbb{R}^2 and F is a non-empty family of subsets of X induced by geometric objects like wedges, rectangles etc., is a set of points N such that $N \cap S \neq \emptyset$ for all $S \in F$ with $|S| > \epsilon |X|$ where $0 \leq \epsilon \leq 1$. N is called a strong epsilon net for the set system (X,F) if $N \subseteq X$. Otherwise, i.e if $N \subseteq \mathbb{R}^2$, N is called a weak ϵ-net.

Following the notational conventions of epsilon net literature, we denote the range spaces defined by rectangles, strips and wedges by R, T and W respectively, the ϵ-net size, i.e $|N|$, by i and the value of ϵ for the range space S with $|N| = i$ by ϵ^S_i.

Epsilon nets have been studied for quite some time now [2], [3], [4], [5]. However, the study of small strong epsilon nets were initiated in [6]. Improved upper and lower bounds on ϵ^R_i were obtained for small values of i. For strips and wedges they obtained $\epsilon^T_i \geq \frac{1}{\sqrt{i+1}}$ and $\epsilon^W_i \geq \frac{1}{\sqrt{i}}$. The study of wedges was continued further in [7] where it was proved that ϵ-nets of size $O(\frac{n}{\sqrt{i}})$ exists for α-fat wedges. However no upper bounds were computed for general orientations of strips and wedges.

In this paper we present some new constructions of small strong ϵ-nets for rectangles and general orientations of strips and wedges. For rectangular range spaces we show $\epsilon^R_i \geq \frac{1}{\sqrt{i}}$ which improves upon the earlier known bound in [6]. For strips in general, which had no previously known upper bounds, we show $\epsilon^T_i \leq \frac{2}{\sqrt{i}}$, $\epsilon^W_i \leq \frac{4}{\sqrt{i}}$ and $\epsilon^T_i \leq \frac{4}{\sqrt{i}}$. Further we show that for $i = 3, 4$ the nets constructed for strips are also nets for wedges. Hence $\epsilon^W_i \leq \frac{4}{\sqrt{i}}$ and $\epsilon^W_i \leq \frac{4}{\sqrt{i}}$.

II. NEW LOWER BOUND ON ϵ^R_i

Let us consider the axis-parallel rectangles as range spaces, and point set $P \subseteq \mathbb{R}^2$. Take 2 points $(x_1, y_1), (x_2, y_2) \in P$ such that $\frac{3}{2} (x_3, y_3)$ where $x_1 < x_3 < x_2$. Now if the points in P incident on vertical line $x = x_2$ shifted by any amount horizontally towards $x = x_1$, without coinciding or crossing, then this will not affect the set of axis-parallel rectangles containing different subsets of P (see figure 1). Similar argument holds for y-values.

Hence, assuming that $\forall(x_1, y_1), (x_2, y_2) \in P : x_1 \neq x_2 \land y_1 \neq y_2$ we arrive at the following conclusion: For axis-parallel rectangles as range spaces, any point set P of size n is some permutation over $\{1, 2, ..., n\}$.

So, for P of size n we need to look at only $n!$ permutations instead of infinite number of point sets. Let $N \subseteq P$ be the net set of size i and $R \subseteq \mathbb{R}$ be any axis-parallel rectangle. Keeping n and i constant, $N \in \binom{\{1, 2, ..., n\}}{i}$. We define k as a function of n and i as follows:

$$k(n, i) = \max_{P} \min_{N} \max_{\forall R} |R : R \cap N = \emptyset|$$

and observe,

$$\epsilon^R_i = \max_{n \geq 1} \frac{k(n, i)}{n}$$

Theorem II.1. $\epsilon^R_i \geq \frac{1}{\sqrt{i}}$

Proof: Consider the point set P as shown in figure 2. We claim that for any choice of net N, there exists a rectangle of size at least 8 that escapes points in N. Formally, $\forall N \exists R : R \cap N = \emptyset \land |R| \geq 8$. We try to prove its contrary i.e., $\exists N \forall R : R \cap N = \emptyset \Rightarrow |R| < 8$. So, we try to find such a N.

It is to be noted that P is symmetric about the principal diagonal of the grid (the line joining points (1,14) and (14,1)). Every point $p_j \in P$ can be identified by its x-value as each has a distinct x and y value by our earlier assumption. So, $p_j = (j, y_j)$.

Let $N = \{p_{\nu_1}, p_{\nu_2}\} \equiv \{(\nu_1, y_{\nu_1}), (\nu_2, y_{\nu_2})\}$, where $\nu_1 < \nu_2$. Next there can be 2 cases:

1. In other words point sets are closed under vertical and horizontal strain.
2. ν^2 refers to the no. of points of P contained in it.
There are 8 maximal rectangles R such that $R \cap N = \phi$: 3 columns c_1, c_2, c_3, 3 rows r_1, r_2, r_3, and 2 others; left-up (LU) and right-bottom (RB), or left-bottom (LB) and right-up (RU) for the above cases respectively (see figure 3).

![Figure 2](image1.png)

Fig. 2. A point set in a 14×14 grid.

![Figure 3](image2.png)

Fig. 3. List of 8 maximal rectangles R such that $R \cap N = \phi$ where $N = \{p_{v_1}, p_{v_2}\}$.

In order to have the size of the 3 columns < 8 the following conditions are needed to be satisfied:

1a) $v_1 \leq 8$

2a) $v_2 \geq 7$

3a) $1 \leq v_2 - v_1 \leq 8$

Likewise, for rows the following conditions are needed to be satisfied:

1b) $\min\{y_{v_1}, y_{v_2}\} \leq 8$

2b) $\max\{y_{v_1}, y_{v_2}\} \geq 7$

3b) $1 \leq |y_{v_2} - y_{v_1}| \leq 8$

*Case i. $y_{v_1} < y_{v_2}$: If conditions 1 and 2 (both a and b) are satisfied, then $v_1 \in \{1, 2, 3, 5, 7, 8\}$ and $v_2 \in \{9, 10, 11, 12, 13, 14\}$ (see figure 4, rectangles formed of solid lines).

- For $v_1 = 3$ and $v_2 = 9$, $|RB| = 8$.

![Figure 4](image3.png)

Fig. 4. The 2 rectangles formed of solid lines contain the values of N satisfying conditions 1 and 2 for Case i and the broken ones for Case ii. Case i: $v_1 \in \{1, 2, 3, 5, 7, 8\}$ and $v_2 \in \{9, 10, 11, 12, 13, 14\}$. Case ii: $v_1 \in \{4, 6\}$ and $v_2 \in \{7, 8, 13, 14\}$.

- For $v_1 = \{1, 2, 3\}$ and $v_2 = \{9, 10, 11\}$, $|RB| \geq 8$ since for $v_1 \leq 3$ and $y_{v_2} \geq y_9$ does not make $|RB| < 8$.

- For $v_1 = 5$ and $v_2 = 12$, $|LU| = 8$.

- For $v_1 = \{5, 7, 8\}$ and $v_2 = \{12, 13, 14\}$, $|LU| \geq 8$ since (similar as above) $y_{v_1} \leq y_5$ and $v_2 \geq 12$ does not makes $|LU| < 8$.

- For $v_1 = 3$ and $v_2 = 12$, condition 3a is dissatisfied.

- For $v_1 = \{1, 2, 3\}$ and $v_2 = \{12, 13, 14\}$ also, condition 3a is dissatisfied.

- By symmetry (about the principal diagonal), similarly as above, for $v_1 = \{5, 7, 8\}$ and $v_2 = \{9, 10, 11\}$ condition 3b is dissatisfied.

*Case ii. $y_{v_1} > y_{v_2}$: If conditions 1 and 2 are satisfied, then $v_1 \in \{4, 6\}$ and $v_2 \in \{7, 8, 13, 14\}$ (See figure 4, rectangles formed of broken lines).

- For $v_1 = 4$ and $v_2 = 8$, $|RU| = 8$; and for $v_2 = 7$, $|RU| = 9$.

- For $v_1 = 6$ and $v_2 \in \{7, 8\}$ condition 3b is dissatisfied.

- By symmetry similar is the case for $v_2 \in \{13, 14\}$.

Hence, proved that there does not exists a net N for which all rectangles R escaping it have size < 8. Thus our initial claim is true.

III. General Approach for Strips and Wedges

The general approach for obtaining upper bounds on ϵ for strips and wedges 3 in the plane starts by partitioning the input point set into several non-empty partitions by means of vertical, horizontal and/or Ham-sandwich cuts. Each partition is represented by its convex hull (abbr. CH). For representational purposes, the CHs are drawn as circles or ellipses. However properties of circle or ellipse never play any role in our proofs.

3denoted by \mathcal{T} and \mathcal{W} respectively
The net is generally chosen from the set of those vertices of the CHs through which some direct common tangents (abb. DCT) between the CHs pass\(^4\). The proof technique consists of exhaustively classifying all possible strips and wedges and for each class showing that strips and wedges that escapes the net, also misses some of the CHs, and hence partitions completely.

All throughout we have made the following assumptions:

III.1 Points are in general position.
III.2 A point set can be partitioned into four regions in any desired ratio with two straight lines.
III.3 Intersection of the partitioning lines do not introduce any singularity.
III.4 Strips and wedges do not contain the points on their supporting lines.

Theorem 1 in [9] guarantees the validity of assumption III.2.

IV. SOME FREQUENTLY USED GEOMETRIC ARGUMENTS

In this section we state and prove four lemmata based on some simple geometric arguments. These will be referred to frequently while proving our main results. Though some of the lemmata in this section follow from their preceding ones, seperately stating them greatly elucidates proofs in certain cases.

We start out by re-defining the terms origin, axes and quadrants w.r.t our present context.

Definition IV.1. Origin is defined as the point of intersection of two straight lines in \(\mathbb{R}^2\) that partition the plane into four disjoint regions. The two straight lines are called the axes and the four disjoint regions so created are called the quadrants.

Lemma IV.2. If \(H\) and \(V\) be two lines intersecting at \(O\) thereby creating a set of four quadrants \(Q = \{Q_i : 1 \leq i \leq 4\}\) and \(L\) be a line that intersects both \(H\) and \(V\) in \(Q_i\) (see figure 5), then \(Q_j \cap L = \phi\) where \(Q_j \in Q\) is vertically opposite to \(Q_i\). Also \(\forall T\) (or \(W\)) such that \(O \notin T\), \(\exists Q_k \in Q\) such that \(T \cap Q_k = \phi\).

Proof: From basic geometry we know that two lines can intersect at only one point. If \(L\) intersects both axes (i.e. \(H\) and \(V\)) in a quadrant, it cannot intersect them (the axes) again in the vertically opposite quadrant. Hence \(L\) cannot have any portion in the vertically opposite quadrant. For proving the second part we observe that the fattest strips (read ‘strips and wedges’ hence forth in this proof) that do not contain the origin will have one supporting line, say \(M\) (see figure 5), passing over the origin \(O\). Clearly for all possible orientations of \(M\), it has no intersection with two vertically opposite quadrants that lie entirely on two different half planes defined by \(M\). Since a strip, with \(M\) as a supporting line, is a subset of one of the half planes defined by \(M\), strips not containing the origin are bound to miss one of these quadrants. \(\blacksquare\)

Lemma IV.3. Let \(H\), \(V_1\) and \(V_2\) be three straight lines such that \(V_1\) and \(V_2\) intersect \(H\) at \(O_2\) and \(O_1\) respectively. Let \(\text{assumption III.1. ensures no DCT can pass through more than 1 point of the same CH}^4\)
perpendicular to its length towards O until $\mathcal{H}P_i \cap Q_i \neq \emptyset$, then either $P_1 \in \mathcal{H}P_i$ or $P_2 \in \mathcal{H}P_i$ or both. In other words, if $\mathcal{H}P_i$ has non empty intersection with Q_i then it contains at least one of $\{P_1, P_2\}$.

\[\text{Fig. 7. Line L passes over Q}_{12} \text{ completely before entering Q}_{i4} \]

\[\text{Proof: Let L} \prime \text{ represent L when L is passing through O (see figure 7). Clearly, when L is over O either Q}_{i2} \subset \mathcal{H}P_i \text{ and } Q_{i4} \cap \mathcal{H}P_i = \emptyset \text{ (as is the case in figure 7) or Q}_{i2} \subset \mathcal{H}P_i \text{ and } Q_{i4} \cap \mathcal{H}P_i = \emptyset \text{ depending upon the mutual orientation of V and L} \prime \text{ (we have assumed V is not parallel to L} \prime \text{, otherwise the lemma is obviously true). Since P}_1 \in Q_{i4} \text{ and } P_2 \in Q_{i2}, \text{ either } P_1 \in \mathcal{H}P_i \text{ or } P_2 \in \mathcal{H}P_i \text{ or both, when L passes through O. This obviously remains true as L continues its translation until } \mathcal{H}P_i \cap Q_i \neq \emptyset. \]

Lemma IV.5. Let CH_1 and CH_2 be two convex hulls with DCT T, P_1 and P_2 be the vertices of CH_1 and CH_2 respectively that defines T and H be a line intersecting T with $H \cap CH_i = \emptyset, \forall i \in \{1, 2\}$. If L be any line intersecting T with point of intersection being at or nearer to P_1 and if L has the property that it does not intersect the segment P_1P_2 and does not intersect H in the half plane (defined by T) that contains the CHs (see figure 8), then $L \cap CH_{3-i} = \emptyset$.

\[\text{Fig. 8. Line L cannot intersect CH}_1 \]

\[\text{Proof: T, being the DCT of CH}_1 \text{ and CH}_2, \text{ defines two half-planes, } \mathcal{H}P_1 \text{ containing none of the CHs and } \mathcal{H}P_2 \text{ containing both the CHs (see figure 8). Since L intersects T, L has one portion in } \mathcal{H}P_1 \text{ and another in } \mathcal{H}P_2. \text{ Clearly the portion of } L \text{ in } \mathcal{H}P_1 \text{ cannot intersect any of the CHs. The portion of } L \text{ in the other half plane, } \mathcal{H}P_2, \text{ can intersect } CH_i \text{ but does not intersect } H \text{ and hence can never intersect } CH_{3-i}. \]

Lemma IV.6. Let CH_1, CH_2, T, P_1, P_2, $\mathcal{H}P_1$, $\mathcal{H}P_2$ and H be as defined in lemma IV.5 and O be the point of intersection of H and T. Let L be any arbitrary line intersecting H in $\mathcal{H}P_1$, and defining two half-planes, $\mathcal{H}P_i^L$ and $\mathcal{H}P_i^R$ such that $\mathcal{H}P_i^L \cap CH_i = \emptyset, i \in \{1, 2\}$. Now if L is translated perpendicular to its length towards O (see figure 9) until $\mathcal{H}P_i^L \cap CH_i \neq \emptyset, \forall i \in \{1, 2\}$, then either $P_1 \in \mathcal{H}P_i^L$ or $P_2 \in \mathcal{H}P_i^L$ or both. In other words, if L has non empty intersection with both CH_1 and CH_2 then $\mathcal{H}P_i^L$ contains at least one of $\{P_1, P_2\}$.

\[\text{Fig. 9. Line L cannot intersect CH}_2 \text{ without passing through P} \]

\[\text{Proof: If } L \parallel T \text{ then the claim is obvious. Otherwise either } P_1 \text{ or } P_2 \text{ will be nearer to } L \text{ than the other. If } P_1 \text{ is nearer, as shown in figure 9, then } R, \text{ the point of intersection of } L \text{ and } T, \text{ will move towards } P_1, \text{ as the line } L \text{ moves towards } O. \text{ Thus } R \text{ will first pass through } P_1 \text{ and then } O. \text{ Therefore, when } R \text{ is at } O, \text{ as shown by the dotted line, } L \text{ has yet not entered the quadrant (defined by } T \text{ and } H) \text{ containing } CH_2 \text{ and } P_1 \in \mathcal{H}P_1^L. \text{ This will obviously hold true as } L \text{ continues translation until } \mathcal{H}P_1^L \cap CH_2 \neq \emptyset. \text{ Similarly, if } L \text{ is nearer to } P_2 \text{ than } P_1. \]

V. Upper Bound on ϵ^2_T

\[\text{Theorem I.1. } \epsilon^2_T \leq \frac{7}{8} \]

\[\text{Proof: Partition the input point set containing } n \text{ points into four quadrants } Q_i, 1 \leq i \leq 4 \text{ by two lines } H \text{ and } V \text{ intersecting at } O_1 \text{ such that } Q_1, Q_2, Q_3 \text{ and } Q_4 \text{ contains } \frac{n}{4}, \frac{n}{4}, \frac{n}{4} \text{ and } \frac{n}{4} \text{ input points respectively as shown in figure 10. Bisect } Q_1 \text{ and } Q_4 \text{ simultaneously by the Ham-sandwich cut } H_1 \text{ which intersects } H \text{ at } O_2. \text{ Bisect the two partitions} \]
so formed in Q_1 again by the Ham-sandwich cut H_2 which intersects H_1 at O_3 and V at O_4 (see figure 11). This creates eight partitions R_i, $1 \leq i \leq 8$ containing $\frac{n}{8}$ input points each. Let CH_1 and CH_2 be the CHs of the points in R_1 and R_4 respectively. Let P_1 and P_2 be the points on CH_1 and CH_2 respectively through which the DCT T between them pass (see figure 12). We claim $\{P_1, P_2\}$ is a $\frac{n}{8}$-net for strips.

Fig. 10. Partitioning the input point set into 4:1:1:2 ratio by V and H

Fig. 11. Final partitioning of the point set.

Consider the region R_4. All possible strips in the plane can be exhaustively classified into the following three types w.r.t R_4: strips that that exclude R_4 completely, strips that include R_4 entirely and strips that partially include R_4. Strips that exclude R_4 completely clearly misses the $\frac{n}{8}$ points contained in R_4. Strips that include R_4 entirely are obviously netted by P_2. Now we note that the quadrilateral $O_1O_2O_3O_4$ is convex and hence any strip that partially includes R_4 will have atleast one supporting line intersecting any two sides of the quadrilateral. However the vertices O_1, O_2, O_3 of the quadrilateral are origins as defined in definition IV.1 and hence from lemma IV.3 it is obvious that any strip with a supporting line intersecting either the side O_1O_2 or O_2O_3 or both must miss atleast $\frac{n}{8}$ input points. Thus, to prove theorem VI it suffices to show that all strips T_f that escapes the net and has atleast one supporting line intersecting the the pair of sides O_3O_4 and O_4O_1 also misses atleast $\frac{n}{8}$ input points. We do this in the following paragraphs.

Let \mathcal{L} be any arbitrary supporting line of T_f that intersects the pair of sides O_3O_4 and O_4O_1 as shown in figure 13. \mathcal{L} defines two half planes $\mathcal{H}P_1$ containing O_2 and $\mathcal{H}P_2$ containing O_4. The other supporting line \mathcal{L}' of T_f has to be on $\mathcal{H}P_1$, else the strip would miss O_2 and hence $\frac{n}{8}$ input points (from lemma IV.2). Also, \mathcal{L}' cannot intersect the quadrilateral $O_1O_2O_3O_4$ because, like \mathcal{L}, \mathcal{L}' will have to intersect the pair of sides O_3O_4 and O_4O_1 which implies T_f misses O_2 and hence
work carried out during May - June, 2011

Let α and β denote the angle subtended by V and L respectively on T and H_1^T and H_2^T be the two half planes defined by T. Clearly, if L is of type $VI.C$, then $\alpha \geq \beta$ (see line L_3 in figure 14) and hence such L will intersect O_1O_4 in H_1^T. Therefore, from lemma IV.5, T_f with L of type $VI.C$ misses CH_1 completely.

Lastly, L cannot simultaneously be of type $VI.D$ and intersect V in H_1^T since otherwise T_f includes both P_1 and P_2 (see line L_4 in figure 14). If L is of type D and intersects V in H_1^T (see line L_5 in figure 14) then, from lemma IV.5, T_f misses CH_2 completely.

Thus L cannot be of any of the above types and hence all T_f misses atleast $\frac{n}{8}$ input points.

Note: Removing the constraint that supporting lines are parallel does not affect most of the arguments above and it seems very likely that the bound holds for wedges too, i.e. $\epsilon_2^W \leq \frac{r}{8}$. But we know $\epsilon_1^W \geq \frac{r}{2}$ which means non-trivial upper bounds should not exist on ϵ_2^W. Therefore something is amiss somewhere. Maybe assumption III.3 in section III needs to be reviewed critically.

VI. UPPER BOUND ON ϵ_3^T AND ϵ_3^W

From now on we shall not make any assumptions about the mutual orientation of the supporting lines. Therefore proofs will be valid for both strips and wedges. Henceforth the phrase strips and wedges will be abbreviated as SAW.

Theorem VI.1. $\epsilon_3^T, \epsilon_3^W \leq \frac{r}{5}$

Proof: Partition the input point set containing n points into four quadrants Q_i where $1 \leq i \leq 4$, by two lines H and V intersecting at O_1 such that Q_1, Q_2, Q_3 and Q_4 contains $\frac{4n}{11}, \frac{3n}{11}, \frac{3n}{11}$ and $\frac{4n}{11}$ input points respectively as shown in figure 15. Bisect Q_1 and Q_4 simultaneously by the Ham-sandwich cut H_1 which intersects H at O_2. Partition Q_2 and Q_3 in the ratio $1:2:1:2$ with the line H_2 which intersects H at O_3 (see figure 16). This creates eight partitions R_i, $1 \leq i \leq 8$ where regions R_3 and R_5 contains $\frac{n}{14}$ points each and the remaining regions contain $\frac{n}{7}$ points each. Let CH_1 and CH_2 be the CHs of the points in regions R_6 and R_7 respectively. Let P_1 and P_2 be the points on CH_1 and CH_2 respectively through which the DCT T between CH_1 and CH_2 pass (see figure 17). P_3 be any point in R_2. We claim $\{P_1, P_2, P_3\}$ is a $\frac{n}{7}$-net for SAW.

Consider the triangle $P_1P_2P_3$ (see figure 17). All possible SAW in the plane can be exhaustively classified into the following two mutually exclusive types:

VI.1.a) SAW that intersect the triangle $P_1P_2P_3$.

VI.1.b) SAW that do not intersect the triangle $P_1P_2P_3$.

In the following two lemmata, lemma VI.2 and lemma VI.3, we prove that SAW that belongs to either of these two types and escapes the net, misses at least $\frac{n}{7}$ input points, which in turn proves our claim that $\{P_1, P_2, P_3\}$ is a $\frac{n}{7}$-net.

Lemma VI.2. SAW of type VI.1.a that escapes the net, misses at least $\frac{n}{7}$ input points.

Proof of Lemma VI.2: Both supporting lines of SAW of type VI.1.a that escapes the net, must intersect the same two
sides of the triangle $P_1P_2P_3$, otherwise they end up containing a vertex of the triangle which is a hitting point. There can be three such distinct pairs and in the next three paragraphs we consider each of them.

Supporting lines intersecting the pair of sides P_1P_2 and P_2P_3: SAW in this case will have supporting lines B_S_1 and U_S_1 as shown in figure 18. B_S_1 and U_S_1 can be pulled apart from one another as far as possible while maintaining the condition that SAW have to escape the net. From lemma IV.4 it follows that the right supporting line R_S, and hence the strip or wedge with R_S as a supporting line, will have empty intersection with at least one of R_1 or R_8. Thus such SAW miss at least $\frac{n}{7}$ input points.

Thus all possible SAW of type VI.1.a that escapes the net also misses at least $\frac{n}{7}$ input points.

Lemma VI.3. SAW of type VI.1.b that escapes the net, misses at least $\frac{n}{7}$ input points.

Proof of Lemma VI.3: Two cases arise for SAW of type VI.1.b that escapes the net.

Case 1. The triangle $P_1P_2P_3$, in figure 17, encloses the point O_1: In this case SAW of type VI.1.b are bound to miss the point O_1 and hence at least $\frac{3n}{11}$ input points (from lemma IV.2).

Case 2. The triangle $P_1P_2P_3$ does not enclose the point O': In this case the points P_1, O_2, P_3, O_1 forms a convex quadrilateral (see figure 19). Two subcases arise.

Case 2a. SAW that do not intersect the quadrilateral $P_1O_2P_3O_1$: In this case SAW miss both O_1 and O_2 and hence at least $\frac{n}{11}$ input points (from lemma IV.2).

Case 2b. SAW that intersect the quadrilateral $P_1O_2P_3O_1$: Since SAW of type VI.1.b do not intersect the triangle $P_1P_2P_3$, in this case SAW must have at least one supporting line intersecting either the pair of sides $\{P_3O_1, O_1P_1\}$ or $\{P_1O_2, O_2P_3\}$ (see figure 19). In both the cases the supporting line intersects the line segment O_1O_2 and hence, from lemma IV.3, such SAW misses at least $\frac{n}{7}$ input points.

Clearly, from all the cases considered, SAW of type VI.1.b that escapes the net, misses at least $\frac{n}{7}$ input points.

VII. UPPER BOUND ON ϵ^T_4 AND ϵ^W_4

Theorem VII.1. $\epsilon^T_4, \epsilon^W_4 \leq \frac{3}{4}$
VII.3 \[\text{Lemma VII.3. SAW of type VII.1.b that escapes the net, misses at least } \frac{n}{4} \text{ input points.} \]

Proof of Lemma VII.3: The quadrilateral \(P_1P_2P_3P_4 \) may be convex or concave. First we shall deal with the convex case. For SAW of type VII.1.b that escapes the net, both the supporting lines must intersect the same two edges of the convex quadrilateral \(P_1P_2P_3P_4 \), otherwise they end up containing a vertex which is a hitting point. This gives rise to \(\binom{4}{2} = 6 \) different cases based on which pair of sides does the supporting lines intersect. However, it suffices to show that SAW misses at least \(\frac{n}{4} \) input points only in the following three cases, since from symmetry considerations, the other three cases will have similar proofs.

Case 1. SAW intersecting sides \(P_4P_1 \) and \(P_3P_2 \): In this case SAW will have the supporting lines \(BS \) and \(US \) as shown in figure 22. \(BS \) and \(US \) can be pulled apart from another as far as possible while maintaining the condition that SAW have to escape the net. Consider the supporting line \(BS \). \(BS \) cannot intersect \(P_1P_2 \) to the left of \(P_2 \), and hence intersects \(T_2 \) at or above \(P_2 \). From **lemma IV.5 and lemma IV.4** it follows that \(BS \), and hence the strip or wedge with \(BS \) as the supporting line, will miss \(CH_3 \) and \(CH_7 \) respectively. Hence in this case, SAW misses at least \(\frac{n}{4} \) input points.

Case 2. SAW intersecting sides \(P_1P_2 \) and \(P_3P_4 \): In this case SAW will have supporting lines \(LS \) and \(RS \) as shown in figure 23. \(LS \) and \(RS \) can be pulled apart from one another as far as possible while maintaining the condition that SAW...
have to escape the net as shown in the figure. From lemma IV.6 it follows that \(\mathcal{LS} \) is bound to miss either \(CH_2 \) or \(CH_3 \) and \(\mathcal{RS} \) is bound to miss either \(CH_1 \) or \(CH_4 \). Hence such SAW misses at least \(\frac{n}{4} \) input points.

Fig. 23. SAW escaping the net and intersecting the pair of sides \(P_3P_1 \) and \(P_3P_3 \)

Case 3. SAW intersecting sides \(P_4P_1 \) and \(P_2P_3 \): In this case SAW will have supporting lines \(\mathcal{US} \) and \(\mathcal{BS} \) as shown in figure 24. \(\mathcal{US} \) and \(\mathcal{BS} \) can be pulled apart from one another as far as possible while maintaining the condition that SAW have to escape the net as shown in the figure. From lemma IV.4 it follows that \(\mathcal{US} \) is bound to miss either \(CH_3 \) or \(CH_6 \) and \(\mathcal{BS} \) is bound to miss either \(CH_7 \) or \(CH_4 \). Hence such SAW misses at least \(\frac{n}{4} \) input points. Now let us consider the case when quadrilateral \(P_1P_2P_3P_4 \) is concave. Assume w.l.g.\(^6\) that the concavity is due to the point \(P_3 \) as shown in figure 25. The concavity introduces only one extra case in addition to the cases considered for the convex case; that of both supporting lines \(\mathcal{LS} \) and \(\mathcal{RS} \) intersecting all the four sides of the quadrilateral as shown in figure 25. Clearly, both \(\mathcal{LS} \) and \(\mathcal{RS} \) has intersection in the second, third and fourth quadrants that are formed by \(V \) and \(H \) as axes\(^7\). From lemma IV.2 it follows that such SAW cannot enter the first quadrant. Therefore, for such point sets, SAW intersecting the quadrilateral misses at least \(\frac{n}{4} \) input points. There are no more cases to consider for SAW type VII.1.b that escapes the net. Thus such SAW misses at least \(\frac{n}{4} \) input points.

Fig. 24. SAW escaping the net and intersecting the pair of sides \(P_4P_1 \) and \(P_2P_3 \)

Fig. 25. SAW intersecting all four sides of the concave quadrilateral \(P_1P_2P_3P_4 \)

VIII. CONCLUSION

The lower bound for axis-parallel rectangles was obtained using computer simulation. As the simulation has a running time of \(O(n!) \), time requirements are prohibitive for large values of \(n \). If an equivalent but more efficient simulation can be designed, bounds for larger values of \(n \) can be explored. Also, the behaviour of the function \(k(n, i) \) can be studied further in the light of the observation that \(\forall n \forall i : 0 \leq k(n+1, i) - k(n, i) \leq 1 \).

As permutations are abstraction for point sets with respect to the axis-parallel rectangles, similar ideas may be applied to other range spaces like strips and wedges. However for strips and wedges, cartesian coordinate system seems to be of little help and alternatives need to be devised for this purpose.

Lastly, there is a considerable distance between lower and upper bounds on \(\epsilon \) for strips and wedges and as such attempts

\(^6\)from symmetry considerations the treatment when concavity is due to any other point will be similar

\(^7\)quadrants are numbered in counter-clockwise fashion starting from top right
to improve their lower bounds may be fruitful. Strips have been considered to be special case of wedges and therefore the parallelism of their supporting lines remains to be exploited for \(i \geq 3 \). Alternative approaches, that are fundamentally different from using common tangents to convex hulls, may also be investigated to lend a new perspective to the problem.

REFERENCES

\(^8 \) a strip is a wedge with supporting lines intersecting at infinity