How to Use Your Block Cipher?

Palash Sarkar

Applied Statistics Unit
Indian Statistical Institute, Kolkata
India
palash@isical.ac.in

IACITS
New Delhi, 2nd April 2009
Block Cipher

\[E : \mathcal{K} \times \mathcal{M} \rightarrow \mathcal{C} \]

- **key space:** \(\mathcal{K} = \{0, 1\}^k \).
- **message and cipher spaces:** \(\mathcal{M} = \{0, 1\}^n, \mathcal{C} = \{0, 1\}^n \).
- \(E_K(M) = E(K, M) \) is a permutation for every fixed \(K \).
- **Typical values:**
 \(n, k = 128, 192, 256 \).
Choose Your Block Cipher

- **Public domain approach**: AES, DES, IDEA, MARS, SERPENT, RC6, ...
 - AES: standardised by the NIST (USA) for encryption of “sensitive (unclassified)” information; FIPS 197, November 26, 2001.

- **Proprietary approach**:
 - **pros**: benefit from “security by obscurity”;
 - **cons**: cannot benefit from third party cryptanalysis.

- **Mixed approach**:
 - start from a public domain block cipher;
 - introduce additional structure and generalize to a large family of block ciphers;
 - pick a random block cipher from the family.
How Secure Is Your Block Cipher?

- **Resists “known” attacks.**
 - Linear and Differential Attacks.
 - Slide, Rectangle, Impossible Differential, Boomerang and other attacks.

- **Pseudo-random permutation (PRP):** indistinguishable from a random permutation where the adversary is allowed to ask for encryptions.

- **Strong pseudo-random permutation (SPRP):** indistinguishable from a random permutation where the adversary is allowed to ask for encryptions and *decryptions.*
Assumption: the block cipher is “perfectly secure” (whatever that may mean).

Is that the end of the story?

No!
Your Block Cipher and Your Requirement

Block length.
- The block cipher handles n-bit blocks.
- Typically, $n = 128, 192$ or 256 bits.

Message Requirements.
- Handle “long” messages.
- Handle “variable” length messages.
- Handle fixed length messages (a disk sector).
Your Block Cipher and Your Requirement

Secure Block Cipher.
- The block cipher ensures strong security for n-bit blocks.

Different Security Requirements.
- Privacy only.
- Authentication.
- Authenticated encryption.
- Authenticated encryption with associated data.
- Wide-block encryption.
- Disk sector encryption.
- Deterministic authenticated encryption (key wrap problem).
- On-line encryption.
- Other niche requirements.
Commonly known modes.

- Electronic codebook mode (ECB).
- Counter mode (Ctr).
- Cipher block chaining mode (CBC).
- Output feedback mode (OFB).
- Cipher feedback mode (CFB).
Things to Note

- ECB does not provide privacy.
- Ctr provides privacy but not authentication.
- CBC provides authentication, but, not authenticated encryption.
- Authenticated encryption with associated data?
- Wide block encryption?
- Disk encryption?
- Other security requirements?

There is no single mode which can be used for all applications.
Insecurity of ECB Mode

Authentication

Goal: detect tampering of the message.

Solution: sender generates tags; receiver verifies them; sender and receiver share a common key.

- **Sequential.** CMAC (NIST-standard).
 - based on CBC;
 - design by Iwata-Kurosawa and based on earlier work by others.

- **Parallel.**
 - PMAC: Black-Rogaway; Rogaway.
 - Generalization of PMAC to an efficient family: Chakraborty-Sarkar.
 - iPMAC: Sarkar;
 - more flexible and slightly faster than PMAC.
Authenticated Encryption

Goal: achieve both privacy and authentication of the message.

- **Two-pass solutions:** relatively inefficient but patent-free;
 - GCM (Viega-McGrew) – NIST standard.

- **Single-pass solutions:**
 - IACBC, IAPM (Jutla);
 - XCBC, XECB (Gligor-Donescu);
 - OCB (Rogaway);
 - Generalization of OCB to an efficient family: (Chakraborty-Sarkar);
 - Flexibility and speed-up over OCB – work under progress.
Authenticated Encryption with Associated Data

Associated data (header).
- Needs to be authenticated but not encrypted.
- Example: IP packets.

Constructions.
- Variants of AE protocols such as OCB and its generalizations.
- Generic construction: combine any AE protocol and a collision-resistant hash function (Sarkar).
Goals.

- Perform “strong” encryption;
- support a tweak;
- for disk encryption, the tweak is the sector address.

Some constructions.

- CBC, EME (Halevi-Rogaway): 2[BC] per block;
- HCtr (Wang-Feng-Wu), HCH (Chakraborty-Sarkar): 1[BC]+2[M] per block;
 better key agility compared to XCB.
- HEH, iHCH (Sarkar): 1[BC]+1[M] per block;
- further work under progress.
Choice of block ciphers:

“to be or not to be (proprietary)”.

But choosing a block cipher is not enough.
- Understand the security goal.
- Choose the appropriate mode of operation.
- Implementation issues. (Not discussed.)

Standards.
- Agencies. NIST (USA), IEEE, IETF;
- India?
A block cipher is like a Swiss army knife. But, you have to use it properly!
Exploding Common Myths.

- Cryptography means you have to garble up bits and bytes. Any electronics engineer can do it. Wrong!
- Good mathematician \Rightarrow Good cryptologist. Wrong!

Sensible Facts About Cryptology.

- Interdisciplinary: mathematics, computer science, engineering.
- Requires specialised knowledge.
- Serious and challenging (academic) discipline.
Thank you for your attention!