1. (a) Given any positive integer n, show that there exist distinct positive integers x and y such that $x+j$ divides $y+j$ for $j=1, 2, 3, \ldots, n$.

(b) If for some positive integers x and y, $x+j$ divides $y+j$ for all positive integers j, prove that $x=y$.

2. Let C_1 and C_2 be two concentric circles in the plane with radii R and $3R$ respectively. Show that the orthocentre of any triangle inscribed in circle C_1 lies in the interior of circle C_2. Conversely, show that also every point in the interior of C_2 is the orthocentre of some triangle inscribed in C_1.

3. Solve the following system of equations for real numbers a, b, c, d, e.

\[
3a = (b+c+d)^3,
3b = (c+d+e)^3,
3c = (d+e+a)^3,
3d = (e+a+b)^3,
3e = (a+b+c)^3.
\]

4. Let X be a set containing n elements. Find the number of all ordered triples (A, B, C) of subsets of X such that A is a subset of B and B is a proper subset of C.

5. Define a sequence $(a_n)_{n \geq 1}$ by $a_1 = 1$, $a_2 = 2$ and $a_{n+2} = 2a_{n+1} - a_n + 2$ for $n \geq 1$. Prove that for any m, $a_m a_{m+1}$ is also a term in the sequence.

6. There is a $2n \times 2n$ array (matrix) consisting of 0’s and 1’s and there are exactly 3n zeros. Show that it is possible to remove all the zeros by deleting some n rows and some n columns.

[Note: A $m \times n$ array is a rectangular arrangement of mn numbers in which there are m horizontal rows and n vertical columns.]