1. Prove that the inradius of a right-angled triangle with integer sides is an integer.
2. Find the number of positive integers which divide 10^{999} but not 10^{998}.
3. Let $ABCD$ be a square and M, N points on sides AB, BC, respectively, such that $\angle MDN = 45^\circ$. If R is the midpoint of MN show that $RP = RQ$ where P, Q are the points of intersection of AC with the lines MD, ND.
4. If p, q, r are the roots of the cubic equation $x^3 - 3px^2 + 3q^2x - r^3 = 0$, show that $p = q = r$.
5. If a, b, c are the sides of a triangle prove the following inequality:
\[
\frac{a}{c + a - b} + \frac{b}{a + b - c} + \frac{c}{b + c - a} \geq 3.
\]
6. Find all solutions in integers m, n of the equation
\[
(m - n)^2 = \frac{4mn}{m + n - 1}.
\]
7. Find the number of quadratic polynomials, $ax^2 + bx + c$, which satisfy the following conditions:
 (a) a, b, c are distinct;
 (b) $a, b, c \in \{1, 2, 3, \ldots 1999\}$ and
 (c) $x + 1$ divides $ax^2 + bx + c$.