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(iv) ruggedness—ito faiiure of components;

(v} optimality—as regards error rates in performance.

For any pattern recognition system, one desires to
achieve the above-mentioned characteristics. Moreover,
there exists some direct analogy between the working
principles of many pattern recognition tasks and neural
network models. For example, image processing and
analysis in the spatial domain mainly employ simple
arithmetic operations at each pixel site in parallel. These
operations usually involve the information of the
neighbouring pixels (cooperative processing} in order to
reduce local ambiguity and to attain global consistency.
An objective measure is required (representing the overall
status of the system), the optimum of which represents
the desired goal. The system thus involves collective
decisions. On the other hand, we notice that neural
network models are also based on parallel and distributed
working principles (all neurcns work in parallel and
independently). The operations performed at each
processor site are also simpler and independent of the
others. The overall status of a neural network can also
be measured.

Let us consider, in particular, the case of pixel
classification. A pixel is normally classified into different
classes depending on its grey value, positional informa-
tion and contextual information (collected from the
neighbours). Pixels at different sites can be classified
independently. The mathematical operations needed
for this task are also simple. A npeural network
architecture in which a single neuronr is assigned
to a pixel and is connected to ils neighbours can
therefore be applied for this task. The neurons operate
in parallel and are independent of each other. The
local interconnections provide the contextual informa-
tion {which can be adaptive or dynamic also) for
classification.

Again, the task of recognition in a real-life problem
involves searching a complex decision space. This
becomes more complicated particularly when there is no
@ priori mformation on class distribution. Neural network
based systems use adaptive learning procedures, learn
from examples and attempt to find a useful relation
between input and output, however complex it may be,
for decision-making problems. Neural networks are also
reputed to model complex nenlinear boundaries and to
discover important underlying regularitics in the task
domain. These characteristics demand that methods are
needed for constructing and refining neural network
models for various recognition tasks. For example,
consider the case of supervised classification. Here each
pattern is characterized by a number of features. Different
features usually have different amounts of weight in
characterizing the classes. A collective decision, taking
into account all the features, is made for assignment of

class labels to an input. A multi-iayer perceptron in which
the input layer has neurons equal to the number of
features and the output layer has neurons equal to the
number of classes, can therefore be used to tackle this
classification problem. Here the importance of different
features will automatically be encoded in the connecting
links during training. The nenlinear decision boundaries
are modelled and class labels are assigned by taking
collective decisions.

Major areas in which neural networks have been
applied in order to exploit the computational power, and
to make robust decisions are as follows.

(i) Pattern recognition (Lippmann 1989, Pal and
Mitra 1992, Burr 1988, Lee et al. 1990, Simpson
1992, 1993 Gorman and Sejnowski 1988, Hirari
and Tsukui 1990, Kanaoka et al. 1992, Giles et al.
1988, Khotanzad and Lu 1990, Khotanzad et al,
1993, Mitra and Pal 1994 a, Newton et al. 1992,
Bruke 1991, Basak er al. 1993a, Guyon 1991,
Fukushima 1992, Martin and Pittman 1991,
Knerr et al. 1992),

(i) Fmage preprocessing (Cottrel et al. 1987, Cottrel
and Mupro 1988, Luttrell 1989, Chen et al. 1991,
Manjunath et al. 1990, Silverman and Noetzel 1990,
Silverman 1991, Ghosh er al. 1991, 1992, 1993
Ghosh and Pal 1992, Shah 1990, Cortes and Hertz
1989, Blanz and Gish 1991, Yu and Tsai 1992,
Babaguchi et af. 1991, Jang 1991a Widrow and
Winter 1988, Basak et ol 1994, Bedini and
Tonazzini 1990),

(iii) Scene analysis (Newton et al. 1990, Nasrabadi and
Li 1991, Jamison and Schalkeff 1988, Nasrabadi
and Choo 1992, Sawaragi et al. 1992).

(iv) Text processing (Burr 1988, Sejnowski and Rosen-
berg 1987).

{v) Expert system design/rule generation (Gallant
1989, Sanchez 1990, Jang 1991b, Narazaki and
Ralescu 1992, Shastri 1988, Mitra and Pal
1994¢,d).

{(vi) Optimization problems (Hopfield and Tank 1985,
1986, Basak er al 1993b, Bruck and Sanz
1988).

(vii) Controller design {fang 1992, Lee 1991, Nguyen
and Widrow 1990, Gupta et al. 1989, Yager 1992,
Hayashi et al. 1992, Berenji 1992, Berenji and
Khedkar 1992).

(viii) Natural language processing (Rocha et al. 1992,
McClelland 1985).
(ix) Approximate reasoning (Takagi et al. 1992,
Romaniuk and Hall 1992).

{x) Speech recognition (Lippmann 1989, Weibel et al.
1989, Franzani 1987, Kohonen 1988).



1184 S. K. Pal and A. Ghosh

4. Integration of the theories of fuzzy sets and neural
networks

As mentioned before, fuzzy sct theory provides an
approximate but effective and flexible way of represent-
ing, manipulating and utilizing vaguely-defined data and
information, and of describing the behaviours of systems
that are too complex or too ill-defined to admit precise
mathematical analysis by classical methoeds and tools.
Successful use of fuzzy logic to create many commercial
preducts has been made recently in Japan. This, in turn,
has increased interest among engineers, researchers and
company execulives to understand and explore this
technology further. Although the approach tries o model
the human thought process in a decision-making system,
it has no relation to the architecture of the human neurat
information processing system, nor deoes it take into
consideration the information storage technique of human
beings, and sometimes it is computationally intensive.

Human intelligence and discriminating power are
mainly attributed to the massively connected network,
of biological neurons in the human brain. We mentioned
eariier that attempts have recently been made to emulate
electronically the architecture and information represent-
ation scheme of human neural networks under the name
artificial newral network models. The collective computa-
tional abilities of the densely interconnected nodes or
processors may provide a material technique, at least to a
great extent, for solving highly complex real-life problems
in a manner similar to a human being.

It, therelore, appears that integration of the merits of
these two technologies can provide more intelligent
systems (in terms of parailelism, fault tolerance, adaptivity
and uncertainty management) to handle real-life recogni-
tion problems. These promises have motivated {during
the last 5-7 years) a large number of researchers to exploit
these modern concepts for solving real-world problems,
leading o the development of a new paradigm called
neurp-fuzzy computing. Besides the generic advantages
of parallelism, fauit-tolerance and uncertainty handling,
the neuro-fuzzy paradigm sometimes provides some
application specific advantages. This will be apparent
later. The fusion or integration (Bezdek and Pal 1992,
Bezdek 1992, Pal and Ghosh 1994, Ghosh and Pal 1993),
made so far, can be categorized under the following
headings.

4.1. Incorporating fuzziness into neural network
frameworks

This approach includes fuzzifying the input data,
assigning fuzzy labels to training samples, and obtaining
outputs of neural networks in terms of fuzzy sets (Fig. 1).

Here, the integration can be viewed as incorporating
the concept of fuzziness into a neural network framework
for bullding fuzzy neural network classifiers. Forexample,

Error Fuzzy

labels

Fuzzy Neural
sets network

Figure 1. Neural network implementing fuzzy classifier.

the output of the neurons in the output layer during both
training and testing phases can be a fuzzy label vector,
the input could be some fuzzy properties and the learning
procedure can also be fuzzified. Tn this case. the network
itself is functioning as a fuzzy classifier. Keller and Hunt
(1985) first suggested a way of incorporating the concept
of fuzzy sets into perceptrons (single-layer) for pattern
recognition. They described a method for fuzzifying the
labelled target data for training the perceptron. Instead
ol giving hard labels to the training samples, membership
functions denoting their degrees of belonging to the
classes were used as labels. Instead of using the weight
updating as

W e W+ X, {2)

{c is a constanl and X, is the input data) they used
Wi W+ iy — ug|"eXy, (3)

where m is a constant and u, denotes the degree of
belonging of X, to the ith class. Assignment of
membership functions to the label vectors alse provided
a good stopping criterion for linearly non-separable
classes (where the classical perceptron usually oscillates).
Note that the benefits that we realize from such an
integration are mostly generic in nature.

The concept of fuzzy sets has recently been introduced
by Pal and Mitra (1992) and Mitra and Pal {1996} in
various stages of multi-layer perceptrons and Kchonen’s
model for designing both supervised and unsupervised
fuzzy classifiers for uncertainty analysis and recognition
of patterns. The self-organizing network developed for
fuzzy partitioning of patterns takes membership values
corresponding to linguistic properties (e.g. small, medium
and high) along with some contextual class information
as input. An index of disorder based on mean square
distance between input and weight vectors has been
defined in order to provide a quantitative measure for
the ordering of the output space. The method based on
the multi-layer perceptron, on the other hand, involves
assignment of appropriate weights to the back-propa-
gated errors depending on the membership values at
the corresponding outputs. Its input can also be in terms
of linguistic properties. Incorporation of fuzziness also
makes the system less oscillatory in addition to providing
superior performance for overlapping classes. The system
is found to be robust with respect to fuzzification of input
properties. These modified versions alse provided better
performance (application-specific advantage) for certain
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non-convex decision regions (Pal and Mitra 1994) as
compared with the classical methods and conventional
connectionist approaches as they incorporate more local
information of the feature space by decompeosing it into
3% (N being the dimension of feature space) sub-regions
through the properties smail, medium and high. A similar
concept of fuzzy labels has also been utilized by Hall
{1991) for learning i a network.

A method has been suggested by Kammerer (1992) to
incorporate known uncertainty of the data in the
computational processes of neural networks. A measure
of certainty is used on each input element in order to
modulate the element’s contribution to the whole input
activity. Some improvements on the classification
accuracy have been demonstrated on optical character
recognition problems. The technique basically shows an
effect of fuzzifying input on the classification accuracy.

Traditional rule-based expert systems encode the
knowledge base in the form of if-then rules; while
connecticnist expert systems (Gallant 1988) use the set
of connection weights of the trained neural net model for
this purpose. Traditional expert systems have some
drawbacks in eliciting knowledge from experts, and in
learning the rules. Some advantages of neural networks
(like training by examples, dynamic adjustment to the
changes in the environment, ability to generalize,
tolerance to noise, and ability to discover new relations
between variables) may be incorporated in expert systems
to remove these drawbacks. Sanchez (1990) has develeped
a fuzzy version of a classificalory connectionist expert
system. Here, the knowledge base is generated from a set
of training examples and is stored as connection
strengths, He has associated two types of connection
weights, e.g. primary linguistic weights and secondary
numerical weights to generate the knowledge base for a
biomedical application (inflammatory protein vanations)
using a feedforward network. Triangular membership
functions like negative large, negative medium, negative
small, approximately zero, positive small, positive
medium and positive large; or decreased, nermal and
increased account for the linguistic weights while the
quantitative weights lie in the range [0,1]. The linguistic
weights are tuned according to the information provided
by the input—output examples while the numeric weights
and the network topology are determined by solving
fuzzy relational equations.

An application of a fuzzy multi-layer perceptron and
Kohonen's model for designing classificatory con-
nectionist expert systems is described by Pal and Mitra
{1992), Mitra and Pal (1994 a,b). These models can handle
impreciseness in the input representation and provide
output decisions as class labels with certainty factors.
The input can be in quantitative, linguistic or set form.
These models have been found to be useful in querying,
inferencing and generating if-then rules for medical

Error
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Figure 2. Neural network implementing fuzzy logic.

diagnosis with incomplete symptoms. An attempt has
also been made by Gorzalczay and McLeish (1992) to
build an expert system which can handle both numerical
and linguistic medical data.

4.2 Designing neural networks guided by fuzzy logic
Jormalism

The second fusion methodology includes designing
neural networks to implement fuzzy logic and fuzzy
decision making, and to realize membership functions
representing fuzzy sets (Fig. 2).

Here neural networks are used for a variety of
computational tasks within the framework of a pre-
existing fuzzy model (Le. implementation of fuzzy logic
formalism using neural networks). The use ol multi-layer
feed-forward neural networks for implementing fuzzy
logic (if-then rules) for decision making systems s made
by Keller ¢t al. (Keller and Tahani 1991, Keller et al.
1992, Keller and Krishnapuram 1992). It has been shown
that the networks designed for implementing fuzzy rules
can learn and extrapolate complex relationships between
antecedents and consequent clauses for rules containing
single, conjunctive and disjunctive antecedent clauses.
For rules having con-junctive clauses, the architecture
has a fixed number of neurons in the input layer for each
antecedent clause. The neurons corresponding to an
antecedent clause are again connected to a particular set
of neurons in the hidden layer. The neurcons in the output
layer, on the other hand, are connected to all the neurons
in the hidden layer. For implementing rules with
disjunctive antecedent clauses, one more hidden layer
was necessary. Keller et al. (1992) attempted to embed
a priori knowledge of each rule directly into the weights
of the network, whereas others applied the standard
back-propagation learning algerithm for learning weights.
The generalizing ability of neural networks has been
exploited here in formulating robust decision rules. This
is useful in image analysis problems. An attempt is also
made in this line by Takagi et al. (1992) to design
steuctured neural networks to perform if-then fuzzy
inference rules.

The use of neural networks for realizing fuzzy
membership functions for recognition problems has been
modelled by Ishibuchi and Tanaka (1990), Takagi and
Hayashi (1991). A method has been suggested by
Ishibuchi and Tanaka (1990) to identify real-valued and
interval-valued membership functions from a set of given
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inpul—output data using a feed-forward layered neural
network and back-propagation of error. Suggestions are
also given by Yamakawa and FFurukawa (1992) to design
ntembership functions of fuzzy neurons (to be discussed
in §4.4.4)

Based on similar concepts, a great deal of effort has
been given for designing neural network driven optimal
decision rules for fuzzy controllers (Gupta et al. 1989,
Yager 1992, Hayashi ef al. 1992, Berenji 1992, Berenji and
Khedkar 1992). For example, a system for implementing
fuzzy logic controllers using a neural network was
designed by Yager (1992) where the linguistic values
associated with the fuzzy control rules are realized by
separate neural network blocks. Emphasis is also given
to adjust membership functions of the linguistic labels
used in control rules. This avoids, to an extent, the
subjective selection of membership functions in fuzzy
control systems, An attempt was made by Nauck and
Kruse (1992) to adapt membership functions in a
linguistic-variable-based fuzzy control environment by
using neural network principles.

Huntsberger and Ajjimarangsee (1990) have modified
Kohonen's network by adding one more layer for
generating a fuzzy self-organizing feature map. Fuzziness
is also incorporated in the learning process by replacing
the learning rate, usually found in Kohonen-type update
rules for the weight vectors, with fuzzy membership of
the nodes in each class. They have also shown that the
results produced by this fuzzy version of Kohonen’s
algorithm are similar to those obtained by fuzzy c-means
algorithms (Bezdek 1981). Parallel implementations of
this technique are also suggested. Further modification
on the rate of learning 1s done by Bezdek er al. (1992) and
a relationship between the fuzzy version of Kohonen’s
algorithm and the fuzzy c¢-means algorithm has been
established.

Another neural network architecture which can be used
for fuzzy clustering and classification was suggested by
Newton et al. (1992). The system uses a control structure
similar to that found in the adaptive resonance theoery
of Carpenter and Grossberg (Grossherg 1998), and
employs a learning strategy, similar to that of a fuzzy
c-means algorithm, to update the centroid position of the
clusters. Functionally the architecture is similar to the
leader clustering algorithms. The algorithm has also been
used (Mitra and Pemaraju 1992) to cluster the simulation
data of a tethered satellite system to estimate the range
of delta voltage necessary to maintain the desired length
rate of tether.

A supervised neural network classifier that utilizes
min-max hyperboxes as fuzzy sets (which are aggregated
into fuzzy set classes) was introduced by Simpsen (1991),
The network has a three-layered architecture having
input, hidden and output layers. Each hidden-layer
neuron represents a hyperbox fuzzy set having two

Neural
network Error F
Fuzzy implementing uzzy
sets fuzzy sets

cennectives

Figure 3. Neuoral network implementing fuzzy connectives.

types of connections from the input layer representing
the min and max points of the inputs. Learning 1s a
single-pass procedure. The model is suitabie for finding
reasonable decision boundaries in overlapping classes
and for learning highly nonlinear relations. Similar
concepts were used for clustering by Simpson (1993).

In NASA’s Johnson Space Center, a study was made
{(Lea et al. 1992) for observing tether oscillations present
during retrieval of a tethered satellite with a space time
neural network (Villarreal and Shelton 1992} The study
shows that the problem requires high momentum and
very low learning rate for the network.

4.3. Changing the basic characteristics of the neurons

Here, the neurons are designed to perform various
operations used in fuzzy set theory (like fuzzy unien,
intersection, aggregation) instead of doing the standard
multiplication and addition operations (Fig. 3).

Krishnapuram and Lee (1992ab) used fuzzy set
connectives in multi-layer network structures suitable
for pattern recognition and other decision making
systems. Various union, intersection, generalized mean
and multiplicative hybrid operators {which are used in
the fuzzy set literature to aggregate imprecise information
in order to arrive at a decision in uncertain environments)
are implemented by layered networks. The hybnd
(compensatory) model used was the y-model of Zimmer-
man and Zysno (1983) where the output is expressed as

y= (H x?‘) y(l “Tla- xi)"')y, )

13

where Y7, 8, =1 and 0<y <1 x,e[0,1] are the
inputs. ; is the weight associated with x; and y controls
the degree of compensation. The hybrid opterator can
behave as a union, intersection or mean operator with
different sets of parameters, which can be learned through
a training procedure. An iterative algorithm to determine
the type of aggregation function and its parameters at
each node in the network is also provided; thereby
making the network mose flexible. The approach
provides a tool [or modelling and managing uncertainty
in the process of combination of evidence from
complementary and supplementary knowledge sources.
The technique also provides a mechanism for selecting
powerful features and discarding irrelevant features via
the detection of redundancy. The training procedure of
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the muliiplicative y-model is siow. To achieve faster
convergence the additive y-model 15 studied, under the
above framework, by Keiler and Chen (1992) as an
alternative connective in such networks.

Gupta (1992) suggested the use of generalized AND
(which can be expressed using the notion of triangular
norms} and OR (represented by triangular co-norm)
operations for fuzzy signals (signals bounded by the
graded membership function over the unit interval [0, 17)
instead of multiplication and summation operations as
used in standard neural networks, Thus for fuzzy inputs,
x()e[0,1]" and synaptic strengths w(t)e [01]" the
weighted synaptic signal z(¢) € [0, 177 is defined as

() = wi(t) AND x(t), i=1,2,...,n (5)
and the aggregated input to a neuron is

ult) = O'R z,(1). (6)

The nonlinear mapping with threshold w, € [0, 1] is then
defined as

vi(t) = [u;() OR wo(0)]%, (7

where o is a positive quantity. For 0 <x <1 the
operation corresponds to the dilation operation of a fuzzy
set and for « > 1 it corresponds to the concentration
operation (Pal and Majumder 1986).

Recently, a fuzzy neural network using logical
operations namely max—min and preduct—probabilistic
sum has been developed by Mitra and Pal (1994a) for
both classification and rule generation with linguistic
properties as input. For the purpose of rule generation
and inferencing, the user could be queried for more
essential feature information in the case of partial input.
The model is likely to be suitable for data-rich
environments. The use of logical neurons helps in
generating rules in more appropriate forms and makes
its hardware realization easier. The system is robust with
respect to mput fuzzification.,

Pedrycz (1991) tried to introduce fuzziness in neural
networks in a different way. He pointed out some
analogies between structures involving composite oper-
ators and a certain class of neural networks. Links are
established between neural network architectures and
relational systems in terms of fuzzy relational equations.
The proposed architecture is based exclusively on set
theoretic operations. The individual neurons perform
logical operations (like max, miny which are mainly used
in set theory instead of arithmetic operations. The
problem of learning of connection strengths or weights
was also studied and relevant learning rules were
proposed. A performance index, called the equality index,
is also introduced to keep track of these logical
operations. He has also suggested (Pedrycz 1992) the
design of neural networks to implement logic operations

Fuzzy Neuron Fuzzy
set set

Figure 4. Block diagram of a fuzzy neuron.

(like AND, OR, MATCH) used in fuzzy set theory to
detect regions of patterns (using reference neurons) and
combining them to yield a final classification decision.

4.4. Making the individual neurons fuzzy

Another method of integration is to make the
individual neurons fuzzy {Lee and Lee 1975, Yamakawa
and Tomada 1989). Here, input to a neuron is a fuzzy
set and the output also 1s a fuzzy set (Fig. 4). The activity
of networks involving fuzzy neurons is a fuzzy process.

The idea was originally introduced by Lee and Lee
{1975). Some of the concepts of fuzzy set theory are
employed to define a fuzzy neuron, which is a generaliza-
tion of the classical neuron. The activity of a fuzzy neuron
is a fuzzy process. The input to such a neuron is a fuzzy
set and the outputs are equal to some positive numbers,
pp (0 < gy < 1), 00 it is firing and zero if it is quiet. g,
denotes the degree to which the jth output is fired. Unlike
conventional neurons, such a neuron has multiple
outputs (set). The utility of neural networks with such
fuzzy neurons has been demonstrated for synthesizing
fuzzy automata. This concept, although introduced long
ago, has not been explored much as compared to others.

4.5. Measures of fuzziness as error or instability of a
network

Integration of the concept of fuzzy sets and neural
network has also been made by using the fuzziness/un-
certainty measures of a fuzzy set to model the error or
instability or energy function of a neural network based
system. An attempt has been made in this context by
Ghosh et al. (1993) to incorporate various fuzziness
measures in a multi-layer network to make 1t able to
perform (vnsupervised) self-organizing tasks in image
processing, in general, and object extraction in particular
(Fig. 5). The network architecture is basically a feed-
forward one with a feedback path. In each layer
every neuron corresponds to an image pixel. Each neuron
is connected to the corresponding neuron in the previous
layer and its neighbours. The status of neurons in the
output layer is described as the membership value to a
fuzzy set representing object regions. A fuzziness measure
(c.g. index of fuzziness and entropy, Pal and Majumder
1986) of this set is used to quantify system error
{instability of the network) and it is back-propagated to
correct weights.
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Figure 5. Layered network implementing self-organization.

Alter the weights have been adjusted the output of the
neurons in the output layer is fed back to the
corresponding neurons in the input laver. The second
pass is then continued with this as input. The iteration
(updating of weights} is continued until the network
stabilizes, ie. the error value (measure of fuzziness)
becomes negligible. This integration makes it possible for
a layered network (which is usually used as a supervised
classifier) to act as an unsupervised one, in addition to
providing a robust and noise-insensitive segmentation
algorithm. Here the neuro-fuzzy integration also provides
an application specific advantage. As such, we cannot
always generalize this concept to use an MLP as an
unsupervised classifier. In Kios and Liu (1992), an
approach is also mentioned to design an optimal network
architecture by optimization of the fuzziness of a set.

Note that the aforesaid attempts of integration for
neuro-fuzzy computing are mainly made in the field of
patlern recognition and to some extent in fuzzy logic
control. Literature on neuro-fuzzy image processing is
not adequate at this moment. For further references on
this approach one can refer to Bezdek and Pal (1992),
Kosko (1992), IEEE (1992, ¢, d,e), Archer and Wang
(1991), Carpenter er al. (1991), Special Issue (1992),
Cehen and Hudson (1992), Pedrycz and Card (1992),
Lin and Lee (1992} and Werbos (1992 a.,b).

5. Scope for further work

The fusion of fuzzy logic and neural network theortes
has been tried out at various levels (namely input, neuron
characteristic, output) mainly in pattern recognition
problems. The literature is relatively poer on such
attempts for performing image processing tasks. Besides
that, most of the attempts are only preliminary. Their
usefulness and validity should be studied ngorously by
choosing problems from different aspects of image
processing and pattern recognition. The complexity of
the algorithms needs to be analysed. Recent studies are
trying to establish links between seme of the existing
fuzzy set-theoretic algorithms and neural network-based
approaches (Bezdek 1992, Huntsberger and Ajjimarangsee
1990, Bezdek er al. 1992, Pedrycz and Card 1992).

The incorporation of fuzzy set concepts in the design
of lavered networks has been found to increase their
capability. Such incorporation in various stages of

self-organizing or auto-associative network-based al-
gorithms may be tried out in order to handle ill-defined
imput data more efficiently. Further investigations
along these lines may include: effect of fuzzification of
input data and output labels on learning, use of fuzzy
geometrical properties as input features for training a
network, and defining fuzzy memberships in noisy
environments. Consideration of fuzzy geometric prop-
erties as input would enable the system to handle
directly raw images without doing pre-processing for
analysis and recognition. Besides this, fuzzy set theoretic
algorithms may also be altered so that they can be
implemented on a particular type of neural-network
architecture.

Preliminary attempts have been made to design neural
networks governed by a fuzzy logic formalism based on
if-then rules. Their application to processing and
analysis of ill-defined images needs to be investigated, in
addition to designing appropriate membership function
and optimal networks for implementing a given set of
rules. Again, other standard operators like sharpening,
complementing, bounded sum, probabilistic sum, bounded
difference etc, which are useful for pattern recognition
need neural network implementations. Similarly, the
utility of fuzzy geometrical propertics as objective
functions (or energy functions) of neural network-based
systems for image processing and recognition constitute
another possibility for further investigation.

6. Conclusions

The relevance of fuzzy set theoretic approaches to certain
tasks of pattern recognition and image analysis 13
described. Characteristics of neural networks and their
importance for designing pattern recognition systems are
mentioned. Utility, feasibility and different ways of fusion
ol these two technologies, so far made, for designing more
intelligent systems have been described. It is observed
that besides the generic advantages, like parallelism, fault
tolerance, robustness and modelling vagueness, the
neuro-fuzzy approach provides some application specific
merits (Pal and Mitra 1992, Mitra and Pal 1994 b,c,
Ghosh et al. 1993), From the discussions it appears that
this new area of neuro-fuzzy computing will continue to
be in the frontline of research for the next ten years, if
not more.
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