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Theorem: Suppose 41 > ,u2 (i.e., priority policy A is optimal if
F1 and A2 are known). Then

lrm RA ( c , 8, N) 1.
N- oo

In other words, for any given 0 < ,B < 1, there exist c,, 81, and
N1 such that for all c < E1, 8 < 81, and N > N1, it is assured that
RA(c, 8, N) . 1 - P.

Proof: From (4)
Ala + o(3)
128 + OM8p-=a2/a1 - M3+o3

- 1 ()d_+o()/3 A O

/L2 + o(3)/3 /"2

and 0(8) -O 0 as 8 - 0. This relation is easily verified by
cross-multiplying. Also.

PN = 0(() and

1 = I + ()2/Ntl) + 0(8) + 0(c).
Hence from (6)

RA(c, 8, N) = TO + 0(E)
= [ + (/1)N + 0(3) + O(c)] 1 + o(c).

Thus

lim RA(c8,3N) = lim [1 + (A2/1)N
N- oN

Al,ifF > A2' Q.E.D.

III. REMARKS, SIMULATIONS, AND CONCLUSION

In this work we demonstrated how a simple finite memory
fixed-structure learning scheme may be effectively used to learn
the priority assignment at a single server service station with two
job-streams. The service times of jobs in each stream is exponen-
tially distributed, whose parameters (and hence the optimal prior-
ity assignment policy) are unknown in the beginning. The al-
gorithm parameters, in Section II, may be suitably chosen so that
in steady state the probability of selecting the optimal action is
arbitrarily close to one.

Simulation comparison of the fixed structure scheme and the
variable structure scheme of [2] is presented in Table I. In the
variable structure scheme of [2], the probability of selecting a

policy is updated on the basis of the sample mean estimate
gathered for each stream. This updating depends on a step size a.

By selecting small values of a(a -O 0), the steady-state probabil-

ity of choosing the optimal policy may be made close to one as

desired. The sample mean estimate for a stream is updated after
serving each job from that stream. In Table I, each simulation
point is averaged over 500 runs. The fixed-structurewhich is updated after completion of every job.

t > 0 time in seconds.
Xi Poisson arrival rate (jobs/seconds) for stream i = 1, 2.
1/s average service time in seconds for stream i = 1, 2.
Xi = 0.25, X2 = 0.75, -2 = 2yq = 2.
PA (t) average probability of choosing optimum policy A at time t.
a2(t) variance of probability of choosing A at time t.

Since X2 > X1, the estimate of the mean converges near its true
value p2 faster than that for stream 1. If, however, at this time
the noisy estimate of 1, is smaller, then the algorithm would have
drifted near the nonoptimal policy. Hence such a scheme would
take a longer time to converge to the optimum.
The fixed-structure scheme proposed here bears resemblance to

the optimal finite memory scheme of Cover-Hellman [4] for the
two-armed bandit problem. Optimal finite memory schemes for
the multiaction (greater than two) learning problems are not
known in the literature. Extending the results of this paper to the
case of more than two job streams, and relaxing assumption of
the exponential service time to arbitrary distributions, are sub-
jects of further investigation.
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evaluation in pattern recognition problems in terms of their intraclass and
interclass measures. The index value decreases as the reliability of a
feature in characterizing and discriminating different classes increases.
The algorithm developed has been implemented in cases of vowel and
plosive identification problem using formant frequencies and different S
and -r membership functions.

I. INTRODUCTION
The process of selecting the necessary information to present

to the decision rule is called feature selection. Its main objective
is to retain the optimum salient characteristics necessary for the
recognition process and to reduce the dimensionality of the
measurement space so that effective and easily computable al-
gorithms can be devised for efficient classification.
The criterion of a good feature is that it should be unchanging

with any other possible variation within a class, while emphasiz-
ing differences that are important in discriminating between
patterns of different types. One of the useful techniques to
achieve this is clustering transformation [1]-[3], which maxi-
mizes/minimizes the interset/intraset distance using a diagonal
transformation, such that smaller weights are given to features
having larger variance (less reliable). Other separability measures
based on information theoretic approach include divergence,
Bhattacharyya coefficient, and the Kolmogorov variational dis-
tance [1]-[7].
The present work demonstrates an application of the theory of

fuzzy sets to the problem of evaluating feature quality. The terms
index of fuzziness [8], entropy [9], and 7r-ness [10] provide mea-
sures of fuzziness in a set and are used here to define the measure
of separability in terms of their interclass and intraclass measure-
ments. These two types of measurements are found to reflect the
concept of interset and intraset distances in classical set theory.
An index of feature evaluation is then defined using these mea-
sures such that the lower the value of the index for a feature, the
greater is the importance (quality) of the feature in recognizing
and separating classes in the feature space.

It is also to be mentioned here that the above parameters
provide algorithms for automatic segmentation [11] of grey tone
image and measuring enhancement quality [12] of an image.

Effectiveness of the algorithm is demonstrated on vowel, plo-
sive consonant, and speaker recognition problems using formant
frequencies and their different combinations as feature set and S
and v functions [13]-[15] as membership functions.

II. Fuzzy SETS AND MEASUREMENTS OF FUZZINESS

A. Fuzzy Sets
A fuzzy set A with its finite number of supports xl, x2,..., xn

in the universe of discourse U is formally defined as

A = {(LA(Xi),X)}, i= 1,2,9..,n (1)

where the characteristic function ,uA(xi) known as membership
function and having positive value in the interval [0,1] denotes
the degree to which an event x, may be a member of A. A point
Xi for which ,uA(xi) = 0.5 is said to be a crossover point of the
fuzzy set A.

Let us now give some measures of fuzziness of a set A. These
measures define, on a global sense, the degree of difficulty
(ambiguity) in deciding whether an element xi would be consid-
ered as a member of A.

B. Index of Fuzziness
The index of fuzziness -y of a fuzzy set A having n supporting

points reflects the degree of ambiguity present in it by measuring
the distance between A and its nearest ordinary set A and is
defined as [8]

ordinary set A. The set A is such that

Rf(x1) = 0, if PA(xi) < 0.5

and

[LAxi) = 1, if IsA(xi) > 0.5.

(3a)

(3b)
The positive constant k appears in order to make y(A) lie

between zero and one, and its value depends on the type of
distance function used. For example, k = 1 for a generalized
Hamming distance, whereas k = 2 for a Euclidean distance. The
corresponding indices of fuzziness are called the linear index of
fuzziness yl(A) and the quadratic index of fuzziness Yq(A).
Considering d to be a generalized Hamming distance, we have

d,(A,A) = E>2IA(Xi) - A(Xi)

(4)

and
2

-y,(A) = - tftAni(Xi),ni

where A n A-(xi) denotes the membership of xi to a set which is
the intersection of the fuzzy set A and its complement A and is
defined as

AAnAfA(xi) = min{,L(xA),(1 -,UA(Xi))1,
i=1,2,**n.

Considering d to be an Eucidean distance, we have

yq(A) = ,[(- LA(Xi) - A (Xi))

i=1,2, ,n. (6)

C. Entropy
The term entropy of a fuzzy set A is defined according to

Deluca and Termini [9] as
1

H(A) = ESn(AA(xi)) i = 1,2,- *, n

with

Sn(PA(Xi)) = -AA(Xi)ln(GA(Xi))

(7)

-(1 - A ( xi)) ln1(l AA( xi)).* (8)
In (7) and (8), ln stands for natural logarithm (i.e., base e).

However, any other base would serve the purpose because of the
normalization factor ln 2 in (7).
y(A) and H(A) are such that (from (5)-(7))

Ymin = Hmin = 0(min), for AA(xi) = O or 1 for all i (9a)
'Ym. = Hm. =1(max), forPA(xi) = 0.5, for all i. (9b)

Suppose PAA(Xi) = 0.5, for all i. Then gi(xi) = 0, for all i,
and

-y,( 2)
2 n

= _ . - = 1
n 2

y 2(E(A())= )
*

= 1

and
2

y(A) = ni/kd(A,4)(2 H(A) = ln2I -i2)
1

= *~. nln2 = 1.
n ln 2

where d(A, A) denotes the distance between A and its nearest
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= EILAnW(Xi),

(5)

(2)

Therefore, -y and H increase monotonically in the interval [0, 0.5]
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and decrease monotonically in [0.5,1] with a n
,u = 0.5.

D. 'if-ness
The 7T-ness of A is defined as [10]

7r(A) =-£ G (xi), i = 1,2

where G,w is any 7T function as explained in th
G, (O < G, 1) increases monotonically i:

Xmax/2, say] and then decreases monotonically
with a maximum of unity at xma,/2, where
maximum value of xi.

III. MEMBERSHIP FUNCTION
Let us now consider different S and vr fi

1¾A(xi) from xi. The standard S function as

[13] has the form

I-AS(Xi; a, b, c)
= 0,

= 2[(xi- a)/(c- a)]2,
= 1- 2[(xi - c)/(c- a)]2,
= 1,

in the interval [a, c] with b = (a + c)/2. T
known as the crossover point for which AS
= 0.5.

Similarly, the standard v function has the f

LA,(Xi; a, c, a') = AAS(Xi; a, b, c),
=A1- 1sS(Xi; C, b', a

in the interval [a, a'] with c = (a + a')/2, b
b' = (a' + c)/2. b and b' are the crossover I
= LA,7(bY) = 0.5, and c is the central point al
Instead of using the standard S and X fun(

consider the following equation as defined
Majumder [14], [15]

PLA(Xi) = G(xi) I + Fd

naximum of one at with

b = 2c - b'

a = 2b - c

a' = 2b' - c

(14c)
(14d)
(14e)

*, n (10) where (x .) , (xqj)max and (xqiXmn denote the mean, maxi-
mum, and minimum values respectively, computed along the q th

te Section III. coordinate axis, over all the n samples in Cj.
n [xi=O toxi = Since q(c) = i((xj)av) =1, the values of -y and H are zero
in [Xmax/2, Xmax] at c (xqj)av and would tend to unity (9) as we move away
xmax denotes the from c towards either b or b' of the 7T function (i.e., from mean

towards boundary of C.). The lower the value of y or H along
the qth component in C;, the greater would be the number of
samples having ,i(x) =1 (or, the less would be the difficulty in

anctions to obtain deciding whether an element x can be considered, on the basis of
defined by Zadeh its qth measurement, a member of C) or not) and hence the

greater would be the tendency of the samples to cluster around
its mean value, resulting in less internal scatter or less intraset
distance or more compactness of the samples along the qth axis

xi < a (Ila) within C). Therefore, the reliability (goodness) of a feature in
characterizing a class increases as its corresponding y or H value

a < xi < b (llb) within the class (computed with 7T function) decreases.
The value of y or H thus obtained along the qth coordinate

b As xi 6 c (lic) axis in CJ may be denoted by cYqj or Hqj.
xi > C (lid) Let us now pool together the classes C) and Ck (j, k =

1,2, * nm, j * k) and compute the mean (xqjk) av, maximum
'he parameter b iS (Xj(k )max and minimum (xqjk),nin values of the qth component
(b) = S(b; a, b, c) over all the samples (numbering n1 + nk). The value of y or H

so computed with (14) would therefore increase as the goodness
Form of the qth feature in discriminating pattern classes C, and Ck

x< c (12a) increases, because there would be fewer samples around the mean
(Xqjk) av of the combined class, resulting in y or H 0O, and more

xi > c (12b) samples far from the (Xqjk)av, giving y or H ~ 1. Let us denote
= (a-+ c)/2 and the -y and H value so computed by <ik and H4jk, which

points, i.e., (b) increase as the separation between C. and Ck (i.e., separation
which 11 - (b1 between b and b') along the qth dimension increases or, in other

ctions one can Uso words, as the steepness of 7r function decreases.
by Pal and Dutta It is to be mentioned here that one can also replace (Xqj ) av

(Xqj)max and (xqj)min of (14) by (Xqjk)av (Xqj)av and (Xqk)av,
-F respectively, to compute -Yqjk or Hqjk. In this case, only their

absolute values but not their behavior, as described previously,)(13) would be affected.

which approximates the standard membership functions.
Fe and Fd (two positive constants) are known respectively as

exponential and denominational fuzzy generators and control the
crossover point, bandwidth, and hence the symmetry of the curve
about the crossover point. x,, is the reference constant such that
the function represents an S-type function Gs for x,n = xmax and
a n7-type function G, for xn = Xi, 0 < XI < Xmax, where xmax
represents the maximum value of xl.

IV. FEATURE EVALUATION INDEX
Let Cl, C2, C., Cm be the m-pattern classes in an N-

dimensional (X1, X2,* *, Xq,..., XN) feature space Qx. Also, let
n (j = 1,2,* m) be the number of samples available from
dfass C). The algorithms for computing y, H, and nr-ness values
of the classes in order to provide a quantitative index for feature
evaluation are described in this section.

A. Computation of y and H Using Standard X Function
Let us consider the standard X function (12) for computing y

and H of C) along the qth component and take the parameters
of the function as

C Xqj)av (14a)

i = c + max { ( X7j)av (Xqj)jmin }

(14b)

B. Computation of y and H Using Standard S Function
For computing y and H of C) along the qth component let us

now take the parameters of S function (11) as
b =(Xq,j).
c = b + max{( Xqj)av- (Xqj)max S I( Xqj)av

(iSa)

( Xqj)min )
(15b)

where
a = 2b - c. (15c)

Since t(b) = ,((x .)av) = 0.5, the values of -y and H are 1 at
b = (Xqj)av and woutl tend to zero (9) as we move away from b
towards either c or a of the S function. The higher the value of y
or H, the greater would be the number of samples having
p(x) - 0.5 and hence the greater would be the tendency of the
samples to cluster around its mean value, resulting in less internal
scatter within the class. Therefore, unlike the case with r func-
tion, the reliability (goodness) of a feature in characterizing a
class Cj increases as its corresponding y4j or Hqj value within
the class increases.

Similarly, if we now pool together the classes CJ and Ck
(jI k = 1, 2, * *,m, j A k) and compute the mean, maximum
and minimum values of the qth component over all the samples
(n1 + nk), then the value of Yqjk or Hqjk so computed with (15)
would therefore decrease as the goodness of the qth feature in
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Fig. 1. Vowel diagram in F1-F2 plane.

discriminating pattern classes C. and Ck increases; becaus
would be fewer samples around the mean of the classes <
Ck, resulting in y or H 1, and more samples far fro
mean, giving 'y, or H 0.

It therefore appears that the yqj (or Hqj) and Yqjk (or
reflect the concept of intraset and interset distances, respec
in a classical feature-selection problem. With decrease in ir
and interset distances along qth component in CJ the val
Yq] (or Hqj) and Yqjk (or Hqjk) are seen to decrease, or in
when computed using the 7r, or S function.

C. Computation of r-ness

Similarly, for computing 7Tj along the qth dimension
the parameters of the function are set as follows:

C = (Xqj)av

a' + max{( Xqj)av (Xqj)ma (fXqj)av Xqj)mir

with

a = 2c - a', b = (a + c)/2, b = (a' + c)/2.
For computing ITqjk, the classes C. and Ck are pooled tol
and these parameters are obtained from (n1 + nk) samples
the yS (or HS) value obtained with S function, ITqj anc
increase as intraset and interset distances in C. decrease.

Considering these intraclass and interclass' measures in
case, the problem of evaluating feature quality in Qx the
reduces to minimizing/maximizing the values of

yqj or H:l/yqj or H or 7T,i

while maximizing/minimizing the values of

Yqjk or Hqjk/Yqjk or Hqjk or Tqijk
The feature-evaluation index for the qth feature is accor(
defined as

(FEI)q = dqjdq
qjk

j, k =1,1 ... *m,j o k, q =1,2, *+S

where d stands for y' or H' and
d

(FEI)q =dq qjk

+ dq

e there
Cj and
)m the

Hqjk)
tively,

where d stands for yS or HS or Ir-ness. The lower the value of
(FEI)q, the higher is, therefore, the quality (importance) of the
qth feature in characterizing and discriminating different classes
in Qx.

V. IMPLEMENTATION AND RESULTS
itraset For implementation of the above algorithm, the test material is
Lues of prepared from a set of nearly 600 discrete phonetically balanced
crease, speech units in consonant-vowel-consonant Telugu (a major

Indian Language) vocabulary uttered by three male speakers in
the age group of 30-35 years.
For vowel sounds of ten classes (8, a, i, i:, u, u:, e, e:, o and

in Cj, o:) including shorter and longer categories, the first three formant
frequencies at the steady state (F1, F2, and F3) are obtained

(16a) through spectrum analysis.
For consonants, eight unaspirated plosive sounds namely the

11 velars 7k, g/, the alveolars /i, d/, the dentals /t, d/, and thenif bilabials /p, b/ in combination with six vowel groups

(16b) (8, a, E, I, 0, U) are selected. The formant frequencies are mea-
sured at the initial and the final state of the plosives. The details

(16c) of processing and formant extraction are available in [14]-[16].

gether A. Vowel Recognition
Like A set of 496 vowel sounds of ten different classes are used here
'7 qjk as the data set with F1, F2, and F3 as the features. Fig. 1 shows

the feature space of vowels corresponding to F1 and F2 when
each longer and shorter categories are treated separately.

refore Fig. 2 shows the order of importance of formants in recogniz-
ing and discriminating different vowels as obtained with intra-
class measures (diagonal cells) and FEI values (off-diagonal
cells). Results using only S function in computing y, and H
values are shown here. Lower triangular part of the matrix
corresponds to the results obtained with standard S and ST
functions ((11) and (12)) whereas, the upper triangular portion
gives the results corresponding to their approximated versions

dingly (13). While using (13) we selected the parameters as follows.
For S-type Function:

Xn (Xqi)max '

(17a)

(17b)

for computing yqj or Hqj
= (Xqjk )max for computing Yqjk or Hqjk.

(18a)

(18b)
Fe and Fd were selected in such a way that (xq)av corresponds to
the crossover point, i.e., Gs((xq)av) = 0.5. To keep the crossover
point fixed at (xq)av, different values of Fe and Fd may be used
to result in various slopes of S function.

I I I I

2400 2600
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Fig. 2. Order of importance of features.

For vr-type Function:

Xn = ( Xqj)av for computing 'Tqj

= (Xqijk) for Computing 7Tqjk

(19a)

(19b)

As crossover points have no importance here in measuring r-ness,
the selection of fuzzifiers is not crucial.
The results using (13) (as shown in the lower trianglular part of

Fig. 2) were obtained for F, = 1/16, 1/8, 1/4, 1/2, and 1 with
the crossover point at (xq)av. These values of Fe were also found
to yield optimum recognition score in earlier investigations on
vowel and plosive identification [14], [15]. For computing rqj and
Fqjk, Fd was selected to be 50 for Fe = 1/16.

Again, the order of importance as shown in Fig. 2 was ob-
tained after pooling together the shorter and longer counterparts
(differing mainly in duration) of a vowel. In a part of the
experiment the shorter and longer categories were treated sep-
arately, and the order of importance of formants for the corre-
sponding yqj, Hq , and s7 ¼ values (intraclass measures) is listed
in Table I. This is incluJed for comparison with the diagonal
entries of Fig. 2.
For vowel recognition (except for /E/, as shown from Fig. 2)

the first two formants are found to be much more important than
F3 (which is mainly responsible for speaker identification). Fur-
thermore, better result has been obtained for the cases when the
shorter and longer categories are pooled together than the cases
when they are treated separately. The result agrees well with
previous investigation [14]. From the FEI measures of different
pair of classes (off-diagonal cells of Fig. 2), F1 is seen to be more
important than F2 in discriminating the class combinations
/U, 0/, /I, E/, /a, U/, and /8, U/, i.e., between /front and
front/ or /back and back/vowels. For the other combinations,
i.'e., discriminating between /front and back/ vowels, F2 is
found to be the strongest feature. The above findings can readily
be verified from Fig. 1.

Typical FEI values for F1, F2, and F3 are shown in Table II to
illustrate the relative difference in importance among the for-
mants in characterizing a class.

Similar investigations have also been made in case of speaker
identification problem using the same data set (Fig. 1) and
(F1 F2, F3, F3 - F2, F3 - F1, F3/F2, F3/F1} as the feature set.
FEI values have been computed for each of the three speakers

TABLE I
INTRACLASS AMBIGUITIES FOR SHORT AND LONG VOWEL CLASSES

Membership Vowel Class
Function

i: u u: e e: o o:

2 1 2 3 4 1 2 2
Standard 2 1 2 6 6 1 2 2

1 1 2 6 6 1 2 2

Approximated 3 1 2 1 5 1 2 1
version 3 1 2 1 5 1 2 1

1 1 2 1 1 1 2 1

1: F1 F2 F3 2: F2 F1 F3
3: F1F3F2 4:F2F3F1
5: F3IFF2 6: F3F2F1

individually for all the vowel classes. Contrary to the vowel
recognition problem, F3 and its combinations were found here to
yield lower FEI values, i.e., more important than F1 and F2-
resembling well the earlier report [14].

B. Plosive Recognition
A set of 588 unaspirated plosive consonants are used as the

data set with AF1, AF2 (the difference of the initial and final
values of the first and second formants), AT (duration), AF1/AT,
AF2/AT (the rates of transition) as the feature set.
The order of importance of the features for plosive recognition

according to FEI values does not seem to be very regular as has
been obtained in case of vowel recognition problem. Here all five
features have more or less importance in determining the plosive
classes, contrary to the case of vowel recognition, where F3 has
much less importance than F, and F2 in defining the vowel
classes. However, a qualitative assessment has been adopted here
to formulate an idea about the quality of the features based on
the measure of FEI.

Table III shows the number of times each feature has occupied
a particular position of importance on the basis of FEI measure
using y, H, and r-ness values and different target vowels.
Results corresponding to both standard membership functions
and their approximated versions are included for comparison.
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