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the squ,lre error is used as fitness function) we can rose a termination 
condit ion on fitness value [7]. 

Though mutation is performed with a very low probability, it has an 
importilllt role in the convergence of genetic algorithms. Mutation is a 
necessdry gCJlc.lic operation beC<lllse it enables (i) to regain the informa
tion lost during early generations; (ii) to obtain a bit value (allele) which 
does not exist at the locus of that bit in any of the strings in the 
pOpUI,ltiol1; and (iii) to sustain the genetic diversity in order to reduce the 
chance of getting stuck to local optima. 

The elTect of mutation is not always worth. The randomness in perform
ing IllULllioll may c"use a rCI)lacement or an important bit value, and 
consequenlly the fast convergence to a good solution may be affected. 
Sometimes it diverges the homogeneity of the population during final 
generations which may delay the process of convergence. On the other 
hand, slow r,lIe of mutation is unable to sustain the genetic diversity in the 
POPUI,\liul1 during e,ldier gener'ltioIlS. 

Ada!J{il't, /fILt{alion: To maintain the diversity ill the population Whitley, 
St(lrkwc;!l her, and Bogart [4] introduceu the concept of adaptive mutation. 
Their lllethod differs from the conventional technique only in the varying 
rate or lllut;ttiOll. ]n the early generations the mutation rate is kept low 
and it incre,\ses with time. The homogeneity of the population increases 
with gener<llions which may hinder the convergence of the algorithm to a 
global optilllum solution. The varying rate of mutation, as suggested in [4], 
helps to 1l1'linl<lin the genetic diversity. Note that this may make the 
;dgoritlll1l sl(\\v due to higher r,lle of Illut,ttion. 

In the following section we describe a new technique for mutation 
called, direcled m~ltalion which enjoys the existing merits of the conven
tional mUlation operation and at the same time drives the algorithm fast to 
reach to ,1Tl optimum solution. 

3. DIRECTED MUTATION FOR GAs 

Directed lllutation follows from the concept of induced mutation in 
biological systems [6]. This operation docs not involve probabilistic deci
sion rules but the information acquired in the previous generations. Again, 
it does not alter the probabilistic nature of the search technique. In certain 
envirollment Ihis operation will deterministically introduce a new point 
in the pOplll;ltion. The new roinl is directed (guided) by the solutions 
obtained c'lrlier 'lncl therdore we call it directed mUlation. 

Let .\;1. be the best fit string of the {til generation and j/ be the 
correspundillg Citness value. Let x;~ =(x l • I ,X1,2""'X t .) be the decoded 
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value of the parameters. Now if in the Tth (T> t) generation {he best fit 
string is S;' with fitness value 1;1: (j;~ >Jr*) then a new point x* is 
genera ted as 

x* = x* + a g( x* x* ) (1)T I' 1" • 

Here g(.) can be termed as an acceleration function, which is cxr!ained in 
the next section; 0 < a < 1 is a constant multiplier and T represents the 
first generation <.Jfter I th generation with 1~* >JI*' The point x·'· is then 
encoded as a string S* and is introduced in the population. The other 
steps of GA remain unaltered. 

The function g(-) controls the directed mutation. There could be several 
choices for g; for example, g can be a function of local gradient or it may 
be an extrapolation function. Choosing the multiplier a is an important 
task like any gradient based technique. Equation (1) reveals that higher 
the value of a, the greater is the difference between x* and x;. Some
times, this may speed up convergence to an optimum solution, hut it may 
also lead to a bad solution or to oscillation. On the other hand, a choice of 
small a is expected to drive the <t1gorithm consistently tOW,Ir(!s ,\ gooe! 
solution, but may not speed up the process greatly. A better slr,ltegy would 
he to lise higher (~ in the e;lrlier gcner,ltlons (Inti relatively lower IV values 
towards the end of the process. 

To achieve this, olle can usc (~(I-t/I"",,), /'11:1\ being till..' 111;lxilll1l1l1 
numher of itemlions, instead of (X, ;}n(1 consequently cqu;tlio!l (I) becomes 

x* =x; + a(J - -'-)g(x;~ ,x;). (2)
t max 

The function g(x~, x;) can be the gradient of j(x). If the function IS 

differentiable everywhere, we can use 

(3) 

The choice of (3) is motivated by the steepest descent technique. 
If the function JCx;) is not differentiable everywhere, one can use the 
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following acceleration function 

(4) 

Equation (4) is a crude approximation of derivative-to be more precise, it 
is a measure of trend. 

Another possible choice may be to use simple linear extrapolation, i.e., 

(5) 

The cxtr~lpoL1tcd point x* lies on the line joining x~ and X;I:. 

Con:-.idcr rigurc 2. Here the function is not defined at x', but still 
equation (4) or (5) gcncrates a very desirable point. Obviously, this lllay 
110t be the case always. It may happen that x* generated using (4) or (5) 
has ;1 very Imv filness valuc, But in the new population, x·' will automati
cally be elilllillated uue to its lowcr fitness value. Hence, this process of 
adding new strings is not expected to hinder the convergence rate to a 
goou sollilioll-1110stly it will cxpcuite the process. 

AIgori/lllll 

Given a {unction fCx I' x 2 , .. ·, xJ having n parameters, a set of M 
binary strings of lcngth L =n·l (substring of length I is assumccl for each 

f( X)
 

Fig. 2. 
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parameter) is taken as the initial population. The substrings are then 
decoded into real numbers in the interval [-1, I] and multiplied by some 
suitable constant to make them lie into their respective domains. Corre
sponding to each string Si (i = 1,2, ... , M) the fitness function value Ii is 
calculated. Using the best solutions of the present and previous genera
tions a new point is generated by directed mutation process described 
earlier. After generating the new population by the conventional genetic 
operators (viz., selection, crossover and mutation), the encoded version of 
the induced point is introduced in the new population and the entire 
process is repeated for a desired number of times. 

We emphasize that the usc of (4) does not convert the algorithm to 
gradient search. Because, the entire set of genetic operations is still in use, 
so the probabilistic natu rc of the algorithm does not change, nor docs it 
increase the chance of getting stuck to a local optimum. The directed 
mutation often will make the transition to an optimal solution faster. 
Using equation (4) it exploits the benefits of both gradient search and GA. 
Similarly using equation (5) it also enjoys benefits of both extrapolation 
and GA. 

4. RESULTS AND DISCUSSIONS 

To demonstrate the crrectivcness of thc proposed concept of directed 
mutation, we have used rour functions f" i = I, 2, 3, and 4 ,IS shown in 
T,lbk I. Exccrt for /1' thc rest ;lrc multivariate functions. T'lhlc I shows 
the gloh,d m,lximum v;l!ucs of' c;\ch fUllction ;dong with the L!(\lll"ins used. 
TllC complex 1'1Inctillll;t1 be!l;lvior (\1" .I;S is depicted through (hcir (wo 

TABLE I 

hillel ions Considcred for Oplimi/.<tlion 

FlIIlC[ ion hlnel ion;t1 form Domain M;IXil\llllll valuc 

II 2+e'O-rCos(JO-x) if X~ 10 o~x~ 20 3,()() 

2+ex-1IICos(x-!O) if x>!O 

12 
5

L {x j e I - .\, + ( I - x, ) e>, } O~XI~ I ~.30 

i= I 
:"I 

fJ Lx; O~X,~ tU ~()(l.()O 

1= I 

II 
4 

1+ L 
J I 1+2.:4 

1 

I 
(

I X, -
I,I) 

() ~x, ~ 10 :'i.OO 
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dimensional sketches (one dimensional for II) in Figure 3(a)-(d). II and 12 
have several local maxima but only one global maximum; on the other 
hand, f:. and I~ have only one maximum each. 14 is bell-shaped, while I:. 
is monotonic. 

In our experiment, we have used binary coding with I, the substring 
length for each parameter, = 15. (Note that the higher the value of I, the 
greater is the accuracy.) Here M, the population size, = 10; Pmul' probabil
ity of mut,ltiol1, = 0.002; '1l1'lX' iteration limit, = 100. 

First we sUlllmarlze experimental observations for linear extrapolation 
kqu;\tion ::i). Figure 4(a) dericts the grarh of fitness value vs. generation 
for I,. MF illl:igure 4(,1) and in suhsequent figures indicates the multipli
cation factur We have investigated with various choices of MF, how<l'. 

ever, in Figure 4(a) and in olhers we reported results for MF = 0, 0.2, ()A, 
and 0.6. The case with MF = 0 represents the original GA-withoLit 
llireclcd l11u(;lli()n. 

Figure 4(;t) shows that with I ()() iterations original GA «ln1101 reach the 
global m,lxirna, but directed mutation is able to drive the algorithm to 
;llt,lin it. Olle GIll see that for MF=O.2, the optimum is reached steadily. 
On the !llher h'llld, for MF = OJ), inilially the rclle or increase of the 

(a)
 

Fig. .lei). Sh.l'(ch nt" 2 + e 10 -, Cos(] 0 - x) if x.( Ill; 2 + e' . 10 Cos( x - 10) otherwise.
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(b) 

I X
Fig.3(b). Sketch or L~~ I{X,C - , + (I -x,kr,J. 

) 

(c) 

Fig.3(c). Sketch of L~= I X,2. 
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(d) 

runctional v~t1LJC is higher, but it takes more iterations to 'attain the 
maximum. The behavior of the curve for MF = 0.4 is somewhat in between 
situations with MF = 0.2 and 0.6. This is natural as for small MF, like any 
gradient type search (we remind readers, in our case it is oat a gradient 
search), optimum is reached slowly but steadily, while for large MF initial 
lllovelllenh lowards a local optimum may be fast, but Ileal' the optimum, 
high MF Ill~lY h~lve ,In adverse dkel. To get around this problem one 
strategy cnllld be to start with a high MF and then reduce MF with 
iteration. This strategy has been explored when gradient information is 
used. Figure 4(b) represents the plot of fitness values with generation for 
/2' Unlike II' here ordinary GA also attains the optimum within 100 
iterations. However, the basie characteristics of Figure 4(b) are the same 
as that of Figure 4(a). 

Again for Figure 4(c), for /J' ordinary GA fails to attain the global 
maximum in Ion iterations. This, of course, does not mean that ordinary 
GA cannot attain the global maximum-it can, provided we allow suffi
cient numher of iterations. For this function there is not much difference 
between the graphs for MF = 0.4 and MF = 0.6. 

For /4 [Figure 4(d)], MF = 0.2 and 0.4 produce better results than the 
ordinary GA, (lild directed mutation with MF = 0.6. We summarize that 
for ai[ or 1he four functions directed mutation with extrapolation is very 
effective in detecting the global optimum quickly. 

Like linear extrapolation, the gradient [Equation (4)] is also used as 
the accclcr;llioIl function in implementing the directed mutation. Figure 
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5(a)-(d) depict the effect of the proposed mutation on optimization of the 
four functions I, through 14' The initial population is the same as that of 
the previous experiment. 

For the function II' the algorithm is able to reach the optimum when 
MF = 0.2 within 100 iterations [Figure Sea)]. But it fails (within 100 itera
tions) when MF = 0.4 and 0.6. This may be due to the loss of genetic 
information in the earlier iterations. For 12' like II' with higher MF value 
(MF= O.G), the fitness value improves initially at a f(lster rate., but ulti
mately fails to att,lin a good solution in IO(} iter(ltions. The fast rate. of 
improvement !TI,ly cause. loss of information (uuring selectioll) which may, 
in turn, afl'ect the algorithm. 

Similar result is observed in the case of 14 [Figure Sed)], (\ h igll value of 
MF helps the algorithm to speed up in the earlier generations but it takes 
more number of iterations to attain the optimum solution. Note that a 
high value of MF does not affect the convergence of the algorithm for I:. 
[Figure 4(c)]. It may possibly be due to the monotonic behavior of the 
function. Investigation, so far, suggests that a choice of !VIp around 0.4 
would be desirable. However, the effect of choice of MP C;ln he minimized 
by using the strate.gy [Equation (4)] or varying a (MF). Next we demon
strate the performance of directed mutation under this strategy. 

In this case, one can always start with a high MF(cv), say MF=O.6 or 
D.S. We also report our findings for MF=0.2, 0.4., and OJ). Figure 6(a) 
depicts the result for II when equation (4) is Llsed. Comparisun of Figure 
6(<.1) with Sea) shows th~lt strategy of reducing MF with iter~tli()n is much 
better than that with fixed MY For example, consider the curves corre
sponding to MF = O.G in both figures o(a) and 5(a). We sec that GA with 
cJireetecJ mutation when used in conjunction with equation (4) converges 
very close to the global optimum in 75 iterations, while with fixed MF the 
final fitness value is much away from the desired one even after 100 
itcr;\tions. Simil<lf is the silu,ltion for I~, I"~ ;lnd ;;1 fFigure ()(;l)-(Cl)]. 

Our findings mentioned so far should not give ,Ill illlpressi()[) that the. 
origin;d CiA fails to ;tll"in the glohal optimum, hut the (;A wilh dire.cted 
mutation docs not. We simply cJemonstrated that GA with directed muta
tion can reach an optimum solution much quicker (with f"cwer iteration) 
than the original GA. If sufficient number of iterations ,Ire allowed, 
conventional GA can also attain the global optimum. Figure 7 demonstrates 
this when 200 iterations are used with four different initial populations 
(PI - P4) for fl' Note that in our experiment we considered the same initial 
population for different runs for a particular function. 

In summary, directed mutation is very effective in finding an optimum 
solution fast. Of the two strategies, fixed MF and reducing MF, the later 
is better as it is less sensitive to the choice of MF( a). 
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5. CONCLUSIONS 

Conventional GAs have been modified incorporating a new concept 
named directed mutation. It helps to maintain the genetic diversity of 
the population, and at the same time accelerates the convergence of the 
algorithm to a good solution. Directed mutation exploits the benefits of 
both gradient search/extrapolation technique and genetic algorithms. The 
effectiveness of GAs with directed mutation operation is demonstrated for 
solving complex optimization problems. Empirically it has been found that 
GAs with directed mutation need lesser number of iterations than the 
ordinary GAs to obtain a good solution. This operation can be incorpo
rateu to any GA based optimization such as automatic selection of optimal 
image enhancement operator, determining optimal set of weights of a 
mu]ti/<lycr perceptron [7], etc. 
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