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value of the parameters. Now if in the 7th (7> ¢) generation the best fit
string is SY with fitness value fF (fF>f*) then a new point x* is
generated as

Xt =xtag(xl,x?). (1)

Here g(-) can be termed as an acceleration function, which is ¢xplained in
the next scction; 0 <o <1 is a constant multiplicr and 7 represents the
first generation after fth generation with f* > /% The point x* is then
cncoded as a string S* and is introduced in the population. The other
steps of GA remain unaltered.

The function g(-) controls the directed mutation. There could be several
choices for g; for example, g can be a function of local gradicnt or it may
be an extrapolation function. Cheosing the multiplier « Is an important
task like any gradient based technique. Equation (1) reveals that higher
the value of «, the greater is the difference between x* and x*. Some-
times, this may speed up convergence to an optimum solution, but it may
also lead to a bad solution or to oscillation. On the other hand, a choice of
small « is expected to drive the algorithm consistently towards a good
solution, but may not spced up the process greatly. A better strategy would
be to use higher « in the carlier generations and relatively lower o values
towards the end of the process.

To achieve this, one can use ol —¢/1, ), 1. being the nuximum
number of iterations, instead of «, and consequently equation (1) becomes

f
x*=xi"f+a£l—r ]g(x’f,xf). (2)

m:t X

S THE ACCELERATION FUNCTION

The function g(x*,x*) can be the gradient of f(x). If thc function is
differentiable everywhere, we can use

g(x7 . x7) =f'(x7). (3)

The choice of (3) is motivated by the steepest descent techniquec.
If the function f(x¥) is not differentiable everywhere, onc can use the
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following acceleration function
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Equation (4) is a crude approximation of derivative—to be more precise, it
is a measure of trend.

Another possible choice may be to use simple linear extrapolation, i.e.,
X =xF+a(x¥—x7). (5)

The extrapolated point x* lies on the line joining x¥* and x7.

Consider Figure 2. Here the function s not defined at x', but still
cquation (4) or (5) gencrates a very desirable point. Qbviously, this may
not be the case always, It may happen that x* gencrated using (4) or (5)
has a very low fitness value. Bul in the new population, x* will automati-

cally be ehminated duc to its lower {itness value. Henee, this process of

adding ncw strings is not expected to hinder the convergence rate to a
good selution-—mostly it will expedite the process.

Algoritfin

Given a function f(x, x,,...,x,) having n paramelers, a set of M
binary strings of length L =n{ (substring of length [ is assumed for each

fix)

T~
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parameter) is taken as the initial population. The substrings are then
decoded into real numbers in the interval [—1, 1] and multiplicd by some
suitable constant to make them lie into their respective domains. Corre-
sponding to each string S, (i =1,2,..., M) the fitness function value f; is
calculated. Using the best solutions of the present and previous genera-
tions a new point is generated by directed mutation process described
earlier. After generating the new population by the conventional genetic
operators (viz., selection, crossover and mutation), the cnecoded version of
the induced point is introduced in the new population and the entire
process is repeated for a desired number of times.

We emphasize that the usc of (4) does not convert the algorithm to
gradient scarch. Because, the cntire set of genctic operations is still in use,
so the probabilistic nature of the algorithm does not change, nor docs it
increase the chance of getting stuck to a local optimum. The directed
mutation often will make the transition to an optimal solution faster.
Using equation (4) it exploits the benefits of both gradient search and GA.

Similarly using equation (5) it also enjoys benefits of both cxtrapolation
and GA.

4. RESULTS AND DISCUSSIONS

To demonstrate the clfectivencss of the proposed concept of directed
mutation, wc have used four functions [, i=1, 2, 3, and 4 as shown in
Table [ Except lor [, the rest are multivariate functions. Table | shows
the global maximum values of cach function along with the domains used.
The complex functional behavior of fis s depieted through (heir two

TABLLI

lunctions Consiclered lor Optimization

Funciton Functional form Domain Maximum value
fi 2+ Cos(10 —x) if x <10 0<x <20 3.00
24" Coslr — 10) il x> 10
5
1> Yo {xe T (L =x e D<x, <1 8.30
i=
3
I8 Yo x? 0<x, <10 300.00
=1
{ 4 l
fy i+ O<x, <10 5.00
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dimensional skectches (one dimensional for f,) in Figure 3(a)-(d). f, and f,
have sevcral local maxima but only one global maximum; on the other
hand, f; and f, have only one maximum each. f, is bell-shaped, while f,
IS monotonic.

In our cxperiment, we have used binary coding with [, the substring
length for each parameter, =15. (Note that the higher the value of /, the
greater is the accuracy.) Here M, the population size, = 10; p, ., probabil-
ity of mutation, =0.002; ¢, itcration limit, = 100.

First we summarize experimental obscrvations for lincar extrapolation
(cquation 5% Figure 4(a) depicts the graph of fitness value vs. gencration
for f,. MITin Figure 4(a) and in subscquent ligures indicates the multipli-
cation {actor «. We have investigated with various choices of M7, how-
ever, in Iigure 4(u) and in others we reported results for MF =0, 0.2, 0.4,
and 0.6, The casc with MF =0 represents the original GA—without
dirceted mutation.

Figure 4(a) shows that with 100 iterations original GA cannot reach the
global maxima, but directed mutation is able to drive the algorithm to
attain it One can sce that for M/7=0.2, the optimum is reached stcadily.
On the other hand, for MIT=0.6, mitnally the rate of incrcase of the

(a)

Fig. 3(a).  Sketeh of 2+ ¢ 74 Cos(10 —x) if x < 10; 2+ ¢ " Cos(x — 10) otherwise.
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Fig. 3(b).  Sketch of &7 {x,e' ¥+ (1 —x))e™
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Fig. 3(c). Sketch of Y7, xl.
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C)

Fig. 3¢d).  Sketch of T+ X7 (1 /142 (x,— D).

tuncttonal value is higher, but 1t takes more itcrations 1o -attain the
maximum. The behavior of the curve for MF = 0.4 1s somewhat in between
situations with M#F =0.2 and 0.6. This is natural as for small MF, like any
gradient type scarch (we remind readers, in our case it is not a gradient
search), optimum is rcached slowly but steadily, while for large MF initial
maovements towards a local optimum may be fast, but ncar the optimum,
high M7 may have an adverse clfect. To get around this problem onc
strategy could be to start with a high M and then reduce M7 with
iteration. This strategy has been cxplored when gradient information is
used. Figure 4(b) represents the plot of fitness values with generation for
f>. Unlike f,. here ordinary GA also attains the optimum within 100
iterations. However, the basic characteristics of Figurc 4(b) are the same
as that of Figure 4(a).

Again for Figure 4(c), for f;, ordinary GA fails to attain the global
maximum in 100 iterations. This, of course, does not mean that ordinary
GA cannot attain the global maximum—it can, provided we allow suffi-
cient number of iterations. For this function there is not much difference
between the graphs for MF=0.4 and MF=0.0.

For f, [Figurc 4(d)], MF=10.2 and 0.4 produce better results than the
ordinary GA, and directed mutation with MF =0.6. We summarize that
for all of the four functions directed mutation with extrapolation is very
effective in detecting the global optimum quickly.

Like lincar cxtrapolation, the gradient [Equation (4)] is also used as
the acceleration function in implementing the directed mutation. Figure

s
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5(a)~(d) depict the effect of the proposed mutation on optimization of the
four functions f, through f,. The initial population is the samc as that of
the previous experiment.

For the function f,, the algorithm is able to reach the optimum when
MF = 0.2 within 100 iterations [Figure 5(a)]. But it fails (within 100 itera-
tions) when MF=0.4 and 0.6. This may be due to the loss of genetic
information in the earlicr iterations. For f,, likc f,, with highcr MF value
(MI:=0.6), the fitness value improves initially at a faster rate, but ulti-
mately fails to attain a good solution in 100 iterations, The fast rate of
improvement may cause toss of information (during sclection) which may,
in turn, affect the algorithm.

Similar result is observed in the case of [, [Figurc 5(d)], a high value of
MF helps the algorithm to speed up in the carlier gencrations but it takes
more number of iterations to attain the optimum solution. Note that a
high value of MF does not affcct the convergence of the algorithm for f;
[Figurc 4(c)]. It may possibly be due to the monotonic behavior of the
function. Investigation, so far, suggests that a choice of M/[ around 0.4
would be desirable. However, the effect of choice of MF can be minimized
by using the strategy [Equation (4)] of varying « (MF). Next we demon-
strate thce performance of directed mutation under this strategy.

In this casc, onc can always start with a high MF(«), say MF=0.6 or
0.8. We also report our findings for MF=10.2, 0.4., and 0.6. Figurc 6(a)
depicts the result for f, when equation (4) is used. Comparison of Figurc
6(a) with 5(a) shows that strategy of reducing MF with itcration is much
better than that with fixed M. For example, consider the curves corre-
sponding to MF =1(.6 in both ligurcs 6(a) and 5(a). We sce that GA with
dirccted mutation when used in conjunction with equation (4) converges
very close to the global optimum in 75 iterations, while with fixed MF the
final fitness value is much away from the desired onc cven after 100
ierations. Similar is the situation for f5, /1, and [ [Figure 6GO—(d)].

Our findings mentioned so far should not give an impression that the
original GA Tails to attam the global optimum, but the GA with directed
mutation does not. We simply demonstrated that GA with dirceted muta-
tion can rcach an optimum solution much quicker (with fewer itcration)
than the original GA. If sufficient number of iterations are allowed,
conventional GA can also attain the global optimum. Figure 7 demonstrates
this when 200 iterations are used with four different initial populations
(P, —P,) for f,. Note that in our experiment we considered the same initial
population for different runs for a particular function.

In summary, directed mutation is very effective in finding an optimum
solution fast. Of the two strategies, fixed MF and reducing MF, the later
is better as it is less sensitive to the choice of MF(a).
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5. CONCLUSIONS

Conventional GAs have been modificd incorporating a new concept
named directed mutation. It helps to maintain the genetic diversity of
the population, and at the same time accelerates the convergence of the
algorithm to a good solution. Directed mutation exploits the benefits of
both gradicnt search /extrapolation technique and genetic algorithms. The
effcctiveness of GAs with directed mutation operation is demonstrated for
solving complex optimization problems. Empirically it has been found that
GAs with directed mutation need lesser number of iterations than the
ordinary GAs to obtain a good solution. This operation can be incorpo-
rated to any GA based optimization such as automatic selection of optimal
image cnhancement operator, determining optimal set of weights of a
multilayer perceptron [7], etc.
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