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Abstract

An integration of a minimal spanning tree (MST) based graph-theoretic technique and expectation maximization

(EM) algorithm with rough set initialization is described for non-convex clustering. EM provides the statistical model of

the data and handles the associated uncertainties. Rough set theory helps in faster convergence and avoidance of the local

minima problem, thereby enhancing the performance of EM. MST helps in determining non-convex clusters. Since it is

applied on Gaussians rather than the original data points, time required is very low. These features are demonstrated on

real life datasets. Comparison with related methods is made in terms of a cluster quality measure and computation time.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The clustering problem has broad appeal and
usefulness as one of the steps in exploratory data

analysis (Jain et al., 1999). It is an important task

in several data mining applications including doc-

ument retrieval, image/spatial data segmentation,

market analysis. Data mining applications place

the following two primary requirements on clus-

tering algorithms: scalability or speed of compu-

tation on large data sets (Bradley et al., 1998;
Zhang et al., 1996) and non-presumption of any

canonical data properties like convexity.

Non-hierarchical clustering algorithms, can be

grouped broadly into two categories. One is based

on iterative refinement of cluster parameters, op-
timizing some criterion function or likelihood of

some probabilistic model (e.g., k-means (Jain et al.,

1999), mixture of Gaussians (Dempster et al.,

1977)). The second is graph-theoretic clustering,

where each cluster represents a subgraph of a

graph of the entire data. One of the well known

graph-theoretic clustering is based on the con-

struction of the minimal spanning tree (MST) of
the data (Zahn, 1971). Both the approaches have

their advantages and disadvantages and cannot

directly be applied for data mining. While the it-

erative refinement schemes like k-means and ex-

pectation-maximization (EM) are fast and easily

scalable to large databases (Bradley et al., 1998,

1999), they can only produce convex clusters and
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are sensitive to initialization of the parameters.

The graph-theoretic methods can model arbitrary

shaped clusters, but are slow and sensitive to noise.

It may be noted that, the advantages of one are

complimentary in overcoming the limitations of

the other, and vice versa.
A general method of clustering using statistical

principles is to represent the probability density

function of the data as a mixture model, which

asserts that the data is a combination of k indi-

vidual component densities (commonly Gaus-

sians), corresponding to k clusters. The task is to

identify, given the data, a set of k populations in

the data, and provide a model (density distribu-
tion) for each of the populations. The EM algo-

rithm (Cherkassky and Mulier, 1998) is an

effective and popular technique for estimating the

mixture model parameters. It iteratively refines an

initial cluster model to better fit the data and ter-

minates at a solution which is locally optimal

for the underlying clustering criterion (Dempster

et al., 1977). Log-likelihood is used as the objective
function which measures how well the model fits

the data. Like other iterative refinement clustering

methods, including the popular k-means algo-

rithm, the EM algorithm is fast and its scalable

versions are available (Bradley et al., 1999). An

advantage of EM over k-means is that it provides

a statistical model of the data and is capable of

handling the associated uncertainties. However, a
problem arising due to its iterative nature is con-

vergence to a local rather than the global optima.

It is sensitive to initial conditions and is not ro-

bust. To overcome the initialization problem,

several methods for determining ‘good’ initial pa-

rameters for EM have been suggested, mainly

based on subsampling, voting and two stage clus-

tering (Meila and Heckerman, 1998). However,
most of these methods have heavy computational

requirement and/or are sensitive to noise.

Rough set theory (Pawlak, 1991; Komorowski

et al., 1997) provides an effective means for classi-

ficatory analysis of data tables. A principal goal of

rough set theoretic analysis is to synthesise or

construct approximations (upper and lower) of sets

concepts from the acquired data. The key con-
cepts here are those of ‘‘information granule’’ and

‘‘reducts’’. Information granule formalises the con-

cept of finite precision representation of objects in

real life situations, and reducts represent the core of

an information system (both in terms of objects

and features) in a granular universe. An important

use of rough set theory has been in generating

logical rules for classification and association
(Skowron and Rauszer, 1992). These logical rules

correspond to different important regions of the

feature space, which represent data clusters.

In this article we exploit the above capability of

the rough set theoretic logical rules to obtain ini-

tial approximate mixture model parameters. The

crude mixture model, after refinement through

EM, leads to accurate clusters. Here, rough set
theory offers a fast and robust (noise insensitive)

solution to the initialization and local minima

problem of iterative refinement clustering. Also the

problem of choosing the number of mixtures is

circumvented, since the number of Gaussian

components to be used is automatically decided by

rough set theory.

The problem of modelling non-convex clusters
is addressed by constructing a MST with each

Gaussian as nodes and Mahalanobis distance be-

tween them as edge weights. Since graph-theoretic

clustering is performed on the Gaussian models

rather than the individual data points and the

number of models are much less than the data

points, the computational time requirement is sig-

nificantly small. A (non-convex) cluster obtained
from the graph is a particular subset of all the

Gaussians used to model the data.

Experiments were performed on some real life

and artificial non-convex data sets. Comparison is

made both in terms of a cluster quality index (Pal

et al., 2000) and computational time. It is found

that rough set enhances the performance of both

k-means and EM based algorithms. It is also ob-
served that EM performs better than k-means al-

gorithm.

The organisation of the article is as follows:

First we describe the EM algorithm for mixture

modelling. Then we present some relevant con-

cepts from rough set theory and the methodology

for obtaining initial EM parameters. The method

of obtaining non-convex clusters from the mixture
model using MST is discussed next. Finally,

experimental results are presented.
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2. Mixture model estimation via the EM algorithm

The mixture model approximates the data dis-

tribution by fitting k component density functions

fh, h ¼ 1; . . . ; k to a data set D having m patterns
and d features. Let x 2 D be a pattern, the mixture
model probability density function evaluated at x is:

pðxÞ ¼
Xk
h¼1

whfhðxj/hÞ: ð1Þ

The weights wh represent the fraction of data

points belonging to model h, and they sum to one

(
Pk

h¼1 wh ¼ 1). The functions fhðxj/hÞ, h ¼ 1; . . . ; k
are the component density functions modelling the

points of the hth cluster. /h represents the specific

parameters used to compute the value of fh (e.g.,
for a Gaussian component density function, /h is
the mean and covariance matrix).

For continuous data, Gaussian distribution is

the most common choice for component density

function. This is motivated by a result from den-

sity estimation theory stating that any distribution

can be effectively approximated by a mixture of

Gaussians (Scott, 1992). The multivariate Gauss-

ian with d-dimensional mean vector lh and d � d
covariance matrix Rh is:

fhðxjlh;RhÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pÞd jRhj
q exp

�
� 1
2
ðx� lhÞ

T

� ðRhÞ�1ðx� lhÞ
�
: ð2Þ

The quality of a given set of parameters

U ¼ fðwh; lh;RhÞ; h ¼ 1; . . . ; kg is determined by

how well the corresponding mixture model fits the

data. This is quantified by the log-likelihood of the

data, given the mixture model:

LðUÞ ¼
X
x2D

log
Xk
h¼1

whfhðxjlh;RhÞ
 !

: ð3Þ

The EM begins with an initial estimation of U and
iteratively updates it such that LðUÞ is non-
decreasing. We next outline the EM algorithm.

EM algorithm: Given a dataset D with m pat-

terns and d continuous features, a stopping toler-

ance � > 0 and mixture parameters Uj at iteration

j, compute Ujþ1 at iteration jþ 1 as follows:

Step 1 (E-Step): For pattern x 2 D. Compute
the membership probability of x in each cluster

h ¼ 1; . . . ; k:

wj
hðxÞ ¼

wj
hfhðxjl

j
h;R

j
hÞP

i w
j
i fiðxjlj

i ;R
j
iÞ
:

Step 2 (M-Step): Update mixture model para-

meters.

wjþ1
h ¼

X
x2D

wj
hðxÞ;

ljþ1
h ¼

P
x2D w

j
hðxÞxP

x2D w
j
hðxÞ

;

Rjþ1
h ¼

P
x2D w

j
hðxÞ x� ljþ1

h

	 

x� ljþ1

h

	 
TP
x2D w

j
hðxÞ

;

h ¼ 1; . . . ; k:

Stopping criteria: If jLðUjÞ � LðUjþ1Þj6 �, Stop.
Else set j jþ 1 and Go To Step 1. LðUÞ is given
in Eq. (3).

3. Rough set initialization of mixture parameters

In this section we describe the methodology

for obtaining crude initial values of the parame-

ters (U) of the mixture of Gaussians used to

model the data. The parameters are refined fur-

ther using EM algorithm described in the previ-
ous section. The methodology is based on the

observation that ‘reducts’ obtained using rough

set theory represent crude clusters in the feature

space.

Let us first present some preliminaries of rough

set theory which are relevant to this article. For

details one may refer to Pawlak (1991) and

Skowron and Rauszer (1992).

3.1. Definitions

An information system is a pair S ¼ hU ;Ai,
where U is a non-empty finite set called the uni-

verse and A a non-empty finite set of attributes. An

attribute a can be regarded as a function from the

domain U to some value set Va.
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An information system may be represented as

an attribute-value table, in which rows are labeled

by objects of the universe and columns by the at-

tributes.

With every subset of attributes B � A, one can
easily associate an equivalence relation IB on U:

IB ¼ fðx; yÞ 2 U : for every a 2 B; aðxÞ ¼ aðyÞg:
Then IB ¼ \a2BIa.
If X � U , the sets fx 2 U : ½x�B � Xg and

fx 2 U : ½x�B \ X 6¼ ;g, where ½x�B denotes the

equivalence class of the object x 2 U relative to IB,
are called the B-lower and B-upper approximation

of X in S and denoted by BX , BX respectively.
X ð� UÞ is B-exact or B-definable in S if

BX ¼ BX . It may be observed that BX is the

greatest B-definable set contained in X, and BX is
the smallest B-definable set containing X.

We now define the notions relevant to knowl-

edge reduction. The aim is to obtain irreducible
but essential parts of the knowledge encoded by

the given information system; these would consti-

tute reducts of the system. So one is, in effect,

looking for maximal sets of attributes taken from

the initial set (A, say), which induce the same

partition on the domain as A. In other words, the

essence of the information remains intact, and

superfluous attributes are removed. Reducts have
been nicely characterized in (Skowron and

Rauszer, 1992) by discernibility matrices and dis-

cernibility functions. Consider U ¼ fx1; . . . ; xng
and A ¼ fa1; . . . ; amg in the information system
S ¼ hU ;Ai. By the discernibility matrix MðSÞ, of
S is meant an n� n-matrix such that

cij ¼ fa 2 A : aðxiÞ 6¼ aðxjÞg: ð4Þ
A discernibility function fS is a function of m

boolean variables �aa1; . . . ; �aam corresponding to the
attributes a1; . . . ; am respectively and defined as

follows:

fSð�aa1; . . . ; �aamÞ ¼ ^f_ðcijÞ : 16 i; j6 n;

j < i; cij 6¼ ;g; ð5Þ

where _ðcijÞ is the disjunction of all variables �aa
with a 2 cij. It is seen in (Skowron and Rauszer,
1992) that fai1 ; . . . ; aipg is a reduct inS if and only

if ai1 ^ � � � ^ aip is a prime implicant (constituent of
the disjunctive normal form) of fS.

3.2. Indiscernibility of patterns and discretization of

the feature space

A primary notion of rough set is of indiscern-

ibility relation. For continuous valued attributes
the feature space needs to be discretized for de-

fining indiscernibility relations and equivalence

classes. Discretization is a widely studied problem

in rough set theory and in this article we use fuzzy

set theory for effective discretization. Use of fuzzy

sets has several advantages over ‘hard’ discretiza-

tion, like modelling of overlapped clusters, lin-

guistic representation of data. We discretize each
feature into three levels low, medium and high,

finer discretizations may lead to better accuracy at

the cost of higher computational load.

Each feature of a pattern is described in terms

their fuzzy membership values in the linguistic

property sets low (L), medium (M) and high (H).

Let these be represented by Lj, Mj and Hj respec-

tively. The features for the ith pattern Fi are
mapped to the corresponding three-dimensional

feature space of llowðFijÞðFiÞ, lmediumðFijÞðFiÞ and
lhighðFijÞðFiÞ, by Eq. (6). An n-dimensional pattern

Fi ¼ ½Fi1; Fi2; . . . ; Fin� is represented as a 3n-dimen-
sional vector (Pal and Mitra, 1992, 1999)

Fi ¼ ½llowðFi1ÞðFiÞ; . . . ; lhighðFinÞðFiÞ�; ð6Þ

where the l values indicate the membership func-
tions of the corresponding linguistic p-sets low,

medium and high along each feature axis. This

effectively discretizes each feature into three levels.

Then consider only those attributes which have

a numerical value greater than some threshold

Th (¼0.5, say). This implies clamping only those
features demonstrating high membership values

with one, while the others are fixed at zero. An
attribute-value table is constructed comprising of

the above binary valued 3n-dimensional feature

vectors.

We use the p-fuzzy sets (in the one-dimensional
form), with range ½0; 1�, represented as

pðFj; c; kÞ ¼
2 1� kFj�ckk

� �2
; for k

2
6 kFj � ck6 k;

1� 2 kFj�ck
k

� �2
; for 06 kFj � ck6 k

2
;

0; otherwise;

8>><
>>:

ð7Þ

866 P. Mitra et al. / Pattern Recognition Letters 24 (2003) 863–873



where k ð> 0Þ is the radius of the p-function with
c as the central point. The details of the above

method may be found in (Pal and Mitra, 1999).

Let us now explain the procedure for selecting

the centers (c) and radii (k) of the overlapping p-
sets. Let mj be the mean of the pattern points along

the jth axis. Then mjl and mjh are defined as the

mean (along the jth axis) of the pattern points

having co-ordinate values in the range ½Fjmin ;mjÞ
and ðmj; Fjmax � respectively, where Fjmax and Fjmin
denote the upper and lower bounds of the dynamic

range of feature Fj (for the training set) consider-
ing numerical values only. For the three linguistic
property sets along the jth axis, the centers and the

corresponding radii of the corresponding p-func-
tions are defined as

clowðFjÞ ¼ mjl ;

cmediumðFjÞ ¼ mj;

chighðFjÞ ¼ mjh ;

klowðFjÞ ¼ cmediumðFjÞ � clowðFjÞ;

khighðFjÞ ¼ chighðFjÞ � cmediumðFjÞ;

kmediumðFjÞ ¼ 0:5ðchighðFjÞ � clowðFjÞÞ;

ð8Þ

respectively. Here we take into account the distri-

bution of the pattern points along each feature

axis while choosing the corresponding centers and

radii of the linguistic properties. The nature of

membership functions are illustrated in Fig. 1.

3.3. Methodology for generation of reducts

Let there be m sets O1; . . . ;Om of objects in the

attribute-value table (obtained using the procedure

explained in the last section) having identical
attribute values, and cardðOiÞ ¼ nki , i ¼ 1; . . . ;m,
such that nk1 P � � � P nkm and

Pm
i¼1 nki ¼ nk. The

attribute-value table can now be represented as an

m� 3n array. Let nk0
1
; nk0

2
; . . . ; nk0m denote the dis-

tinct elements among nk1 ; . . . ; nkm such that nk01 >
nk0

2
> � � � > nk0m . Let a heuristic threshold function

be defined as

Tr ¼

Pm
i¼1

1
nk0

i
�nk0

iþ1

Th

2
6666

3
7777; ð9Þ

so that all entries having frequency less than Tr are

eliminated from the table, resulting in the reduced
attribute-value tableS. Note that the main motive
of introducing this threshold function lies in re-

ducing the size of the mixture model. One attempts

to eliminate noisy pattern representatives (having

lower values of nki) from the reduced attribute-

value table. From the reduced attribute-value table

obtained, reducts are obtained using the method-

ology described below.
Let fxi1 ; . . . ; xipg be the set of those objects of U

that occur in S. Now a discernibility matrix (de-
noted M(B)) is defined as follows:

cij ¼ fa 2 B : aðxiÞ 6¼ aðxjÞg; ð10Þ

for i; j ¼ 1; . . . ; n.
For each object xj 2 xi1 ; . . . ; xip , the discernibil-

ity function fxj is defined as

fxj ¼ ^ _ ðcijÞ : 1
�

6 i; j6 n; j < i; cij 6¼ ;
�
; ð11Þ

where _ðcijÞ is the disjunction of all members of cij.
One thus obtain a rule ri, viz. Pi ! clusteri, where

Pi is the disjunctive normal form (d.n.f) of fxj ,
j 2 i1; . . . ; ip.
Support factor sfi for the rule ri is defined as

sfi ¼
nkiPp
i¼1 nki

; ð12Þ

where nki , i ¼ 1; . . . ; p are the cardinality of the sets
Oi of identical objects belonging to the reduced

attribute value table.
Fig. 1. p-Membership functions for linguistic property sets low
(L), medium (M) and high (H) for each feature axis.
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3.4. Mapping reducts to mixture parameters

The mixture model parameters consists of the

number of component Gaussian density functions

(k) and weights (wh), means (lh) and variances (Rh)
of the components. We describe below the meth-

odology for obtaining them.

(i) Number of Gaussians (k): Consider the an-

tecedent part of a rule ri; Split it into atomic for-
mulas containing only conjunction of literals. For

each such atomic formulae, assign a component

Gaussian. Let the number of such formulae be k.

(ii) Component weights ðwhÞ: Weight of a each
Gaussian is set equal to the normalised support

factor sfi (obtained using Eq. (12)) of the rule (ri)
from which it is derived, wh ¼ sfi=

Pk
i¼1 sfi.

(iii) Means ðlhÞ: A atomic formulae consists of
conjunction of a number of literals. The literals are

linguistic fuzzy sets low, medium and high along

some feature axes. The component of the mean

vector along that feature is set equal to the center
(c) of the p-membership function of the corre-
sponding fuzzy linguistic set. Note that all features

do not appear in a formulae, implying those fea-

tures are not necessary to characterise the corre-

sponding cluster. The component of the mean

vector along those features which do not appear

are set to the mean of the entire data along those

features.

(iv) Variances ðRhÞ: A diagonal covariance

matrix is considered for each component Gauss-

ian. As in means, the variance for feature j is set

equal to radius k of the corresponding fuzzy
linguistic set. For those features not appearing in

a formulae the variance is set to small random

value.

3.5. Example

Consider the following two reducts obtained

from a reduced attribute value table of a data
having two dimension F1 and F2. The example is
illustrated in Fig. 2.

cluster1  L1 ^ H2; sf1 ¼ 0:50;

cluster2  H1 ^ L2; sf2 ¼ 0:40:

Let the parameters of the fuzzy linguistic sets

‘low’, ‘medium’ and ‘high’ be as follows:

Feature 1:

cL ¼ 0:1; kL ¼ 0:5; cM ¼ 0:5; kM ¼ 0:7;
cH ¼ 0:7; kH ¼ 0:4:

Fig. 2. Rough-fuzzy generation of crude clusters for a two-dimensional data, (a) data distribution and rough set rules, (b) probability

density function for the initial mixture model.
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Feature 2:

cL ¼ 0:2; kL ¼ 0:5; cM ¼ 0:4; kM ¼ 0:7;
cH ¼ 0:9; kH ¼ 0:5:

Then we have two component Gaussians with
parameters as follows:

w1 ¼ 0:56; l1 ¼ ½0:1; 0:9� and

R1 ¼
0:5 0

0 0:5

� �
;

w2 ¼ 0:44; l2 ¼ ½0:7; 0:2� and

R2 ¼
0:5 0

0 0:5

� �
:

We summarise below all the steps for rough set

initialization of mixture models.

ii(i) Represent each pattern in terms of its mem-

bership to fuzzy linguistic sets low, medium

and high along each axis. Thus a n-dimen-

sional pattern is now represented by a 3n-

dimensional vector.

i(ii) Threshold each 3n-dimensional vector con-

taining fuzzy membership values to obtain
3n-dimensional binary vector. Retain only

those vectors which are distinct and appear

with frequency above a threshold.

(iii) Construct an attribute-value table from the

reduced set of binary vectors.

(iv) Construct discernibility matrix from the at-

tribute value table. Generate discernibility

functions (rules) for each object in the ma-
trix. Consider atomic formulae of the rules

which are conjunction of literals (linguistic

variables low, medium and high, in this

case).

i(v) Map each atomic formulae to parameters wh,

lh and Rh of corresponding component

Gaussian density functions.

4. Graph-theoretic clustering of gaussian compo-

nents

In this section we describe the methodology for

obtaining the final clusters from the Gaussian

components used to represent the data. A MST

based approach is adopted for this purpose. The

MST is a graph that connects a data set of N

points so that a complete ‘tree’ of N � 1 edges is
built. (A tree is a connected graph without cycles.)

The tree is ‘minimal’ when the total length of the
edges is the minimum necessary to connect all the

points. A MST may be constructed using either

Kruskal’s or Prim’s algorithm. Desired number of

clusters of points may be obtained from a MST

by deleting the edges having highest weights. For

example for the set of nine points fA;B;C;D;
E;F;G;H; Ig illustrated in Fig. 3, two clusters can
be obtained by deleting the edge CD having
highest weight 6. The two subgraphs represent the

clusters. It may be mentioned that arbitrary

shaped clusters may be obtained using the above

algorithm.

Instead of using individual points, we construct

a MST whose vertices are the Gaussian compo-

nents of the mixture model and the edge weights

are the Mahalonbis distance (D) between them is
defined as:

D2 ¼ ðl1 � l2Þ
TðR1 þ R2Þ�1ðl1 � l2Þ; ð13Þ

where l1, l2 and R1, R2 are the means and vari-
ances of the pair of Gaussians. To obtain k clus-

ters, k � 1 edges having the highest weights are
deleted, components belonging to a single con-

nected subgraph after deletion are considered to

represent a single cluster.

Note that each cluster obtained as above is

a mixture model in itself. The number of its

Fig. 3. Using MST to form clusters.
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component Gaussians being equal to the number

of vertices of the corresponding subgraph. For

assigning a point (x) to a cluster, probability of

belongingness of x to each of the clusters (sub-

mixture models) is computed using Eq. (1), and the

cluster giving the highest probability pðxÞ is as-
signed to x, i.e., we follow the Bayesian classifi-

cation rule.

5. Experimental results

Experiments were performed on two real life

data sets with large number of samples and di-
mension. Both the datasets are available in UCI

Machine Learning Archive (Blake and Merz,

1998). An artificial non-convex dataset is also

considered for the convenience of demonstrating

some features of the algorithm along with visual-

ization of the performance. The characteristics of

the datasets are summarised below:

ii(i) Forest covertype: Contains 10 dimensions, 7

classes and 586,012 samples. It is an Geo-

graphical Information System data represent-

ing forest cover type (pine/fir etc.) of USA.

The variables are cartographic and remote

sensing measurements. All the variables are

numeric.

i(ii) Multiple features: This dataset consists of fea-
tures of handwritten numerals (0–9) extracted

from a collection of Dutch utility maps. There

are total 2000 patterns, 649 features (all nu-

meric) and 10 classes.

(iii) Pat: This is an artificial data with two dimen-

sions and two horse-shoe shaped non-convex

clusters with total 417 points.

The clustering results of the proposed method-

ology are compared with those obtained using

1. k-means algorithm with random initialization

(KM).

2. k-means algorithm with rough set initialization

(of centers) and graph-theoretic clustering

(RKMG).
3. EM algorithm with random initialization and

graph-theoretic clustering (EMG).

4. EM algorithm with means initialised with the

output of k-means algorithm and with graph-

theoretic clustering (KEMG).

Among the algorithms mentioned above,
methods 2–4 have the capability for obtaining

non-convex clusters, while method 1 can obtain

convex clusters only. It may be mentioned that, in

the proposed algorithm, we use EM algorithm

with rough set initialization and graph-theoretic

clustering. For the purpose of comparison, in ad-

dition to rough set theoretic initialization, we have

also considered EM algorithms with random
initialization (method 3) and another popular

method for initialization (method 4). Besides these,

to demonstrate the effect of rough set theoretic

initialization on another hybrid iterative refine-

ment-graph theoretic clustering method, we con-

sider method 2, which is the k-means algorithm

with graph theoretic clustering. We could not

present the comparisons with purely graph-theo-
retic techniques (i.e., on the original data) as they

require infeasibly large time for the datasets used.

Comparison is performed on the basis of cluster

quality index b (Pal et al., 2000) and CPU time.

CPU time is obtained on an Alpha 750 MHz

workstation. b is defined as (Pal et al., 2000):

b ¼
Pk

i¼1
Pni

j¼1 ðXij � X ÞTðXij � X ÞPk
i¼1
Pni

j¼1 ðXij � X iÞTðXij � X iÞ
; ð14Þ

where ni is the number of points in the ith

ði ¼ 1; . . . ; kÞ cluster, Xij is the feature vector of the

jth pattern ðj ¼ 1; . . . ; niÞ in cluster i, X i the mean

of ni patterns of the ith cluster, n is the total

number of patterns, and X is the mean value of the
entire set of patterns. Note that b is nothing but
the ratio of the total variation and within-cluster

variation. This type of measure is widely used for
feature selection and cluster analysis (Pal et al.,

2000). For a given data and k (number of clusters)

value, the higher the homogeneity within the

clustered regions, higher would be the b value.
For the purpose of visualization of the parti-

tioning, and illustration of several characteristics

of the algorithm, we first present the results on the

artificial Pat data set which is of smaller dimension
(¼2). The non-convex character of the data is
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shown in Fig. 4. The reducts obtained using rough

set theory, and the parameters of the correspond-

ing four Gaussians are as follows:

cluster1  L1 ^M2; w1 ¼ 0:15;

l1 ¼ ½0:223; 0:511�; R1 ¼
0:276 0

0 0:240

� �
;

cluster2  H1 ^M2; w2 ¼ 0:16;

l2 ¼ ½0:753; 0:511�; R2 ¼
0:233 0

0 0:240

� �
;

cluster3  M1 ^ H2; w3 ¼ 0:35;

l3 ¼ ½0:499; 0:744�; R3 ¼
0:265 0

0 0:233

� �
;

cluster4  M1 ^ L2; w4 ¼ 0:34;

l4 ¼ ½0:499; 0:263�; R4 ¼
0:265 0

0 0:248

� �
:

The distribution of points belonging to each
component Gaussian, obtained after refining the

parameters using EM, is plotted in Fig. 5. These

are indicated by symbols: þ, �, }, and M. The

variation of log-likelihood with EM iteration is

presented in Fig. 6 for both random initialization

and rough set initialization. It is seen that for

rough set initialization log-likelihood attains a

higher value at the start of EM. The final clusters
(two in number) obtained by our method after

graph-theoretic partitioning of the Gaussians are

shown in Fig. 7(a). The algorithm is seen to pro-

duce the same natural non-convex partitions, as in

the original data. It may be noted that the con-

ventional k-means algorithm, which is capable of

generating convex clusters efficiently; fails to do so

(Fig. 7(b)), as expected.

Table 1 provides comparative results (in terms
of b and CPU time) of the proposed algorithm

with other four, as mentioned before, for threeFig. 4. Scatter plot of the artificial data Pat.

Fig. 5. Scatter plot of points belonging to four different com-

ponent Gaussians for the Pat data. Each Gaussian is repre-

sented by a separate symbol (þ, �, } and M).

Fig. 6. Variation of log-likelihood with EM iterations for the

Pat data.
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different datasets. It is seen that the proposed
methodology produces clusters having the highest

b value for all the cases. The CPU time required is
less than that of the other two EM based algo-

rithms (EMG and KEMG). For the k-means

algorithm (KM) although the CPU time require-

ment is the least, its performance is significantly

poorer.

Rough set theoretic initialization is found to

improve the b value as well as reduce the time

requirement of both EM and k-means. It is also

observed that k-means with rough set theoretic

initialization (RKMG) performs better than EM

with random initialization (EMG), though it is
well known that EM is usually superior to k-means

in partitioning.

6. Conclusions

The contribution of the article is twofold.

Firstly rough set theory is used to effectively cir-
cumvent the initialization and local minima

problems of iterative refinement clustering algo-

rithms (like EM and k-means). This also improves

the clustering performance, as measured by b
value.

The second contribution lies in the development

of a methodology integrating the merits of graph-

theoretic clustering (e.g., capability of generat-
ing non-convex clusters) and iterative refinement

clustering (such as low computational time re-

quirement). At the local level the data is modelled

by Gaussians, i.e., as combination of convex sets,

while globally these Gaussians are partitioned

using graph-theoretic technique; thereby enabling

the efficient detection of the non-convex clusters

present in the original data. Since the number of

Fig. 7. Final clusters obtained using, (a) proposed algorithm, (b) k-means algorithm for the Pat data (clusters are marked by ‘þ’ and
‘�’).

Table 1

Comparative performance of clustering algorithms

Algorithm Cluster quality

(b)
CPU time (sec)

Forest data

Proposed 7.10 1021

KEMG 6.21 2075

EMG 5.11 1555

RKMG 5.90 590

KM 3.88 550

Multiple features data

Proposed 11.20 721

KEMG 10.90 881

EMG 10.40 810

RKMG 10.81 478

KM 7.02 404

Pat data

Proposed 18.10 1.04

KEMG 15.40 2.10

EMG 10.90 1.80

RKMG 15.30 0.91

KM 8.10 0.80
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Gaussians is much less than the total number of

data points, the computational time requirement

for this integrated method is much less than that

required by a conventional graph theoretic clus-

tering.

The number of clusters obtained in our algo-
rithm is user specified. In case it is not available,

the same can be automatically determined by com-

puting the derivatives of the edge weight values of

the minimal spanning tree, and deleting the edges

corresponding to the maxima(s) of the derivatives.

This will give rise to the natural grouping of the

data.

It may be noted that the capability of rough set
theory in extracting domain knowledge in the form

of crude rules has been exploited here for cluster-

ing. Similar exploitation has been made earlier

(Szczuka, 2000; Banerjee et al., 1998) for neural

network architecture design.
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