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Knowledge-Based Fuzzy MLP for Classification
and Rule Generation

Sushmita Mitra, Rajat K. De, and Sankar K. Pedllow, IEEE

Abstract—A new scheme of knowledge-based classification ~Some related works in this area include the model by
and rule generation using a fuzzy multilayer perceptron (MLP)  Gallant [5], dealing withsacrophagalproblems, that uses

is _proposed. Knowledge collected from a data set is initially o jnnyts/outputs and a linear discriminant network (with
encoded among the connection weights in terms of classpriori

probabilities. This encoding also includes incorporation of hidden N0 hidden nodes) trained by the simplecket Algorithm Yin
nodes corresponding to both the pattern classes and their comple- and Liang [8] incrementally built a dynamic knowledge base
mentary regions. The network architecture, in terms of both links  capable of both acquiring new knowledge as well as relearning
and nodes, is then refined during training. Node growing and link - axisting information. Fu [1] used the initial domain knowledge
pruning are also resorted to. Rules are generated from the trained . i f rul t te th twork t I hile th
network using the input, output, and connection weights in order (_'n erms ot ru fes) 0 genera-e -e networ opp 0gy, while the
to justify any decision(s) reached. Negative rules corresponding links were weighted to maintain the semantics. Towell and
to a pattern not belonging to a class can also be obtained. TheseShavlik [2] mapped problem-specific “domain theories” into
are useful for inferencing in ambiguous cases. Results on real |ayered neural networks and then refined this reformulated
life and synthetic data demonstrate that the speed of learning knowledge using backpropagation. Machado and Rocha [9]
and classification performance of the proposed scheme are better o . -
than that obtained with the fuzzy and conventional versions of US€d & connectionist knowledge base involving fuzzy numbers

the MLP (involving no initial knowledge encoding). Both convex at the input layer, fuzzydnd’ at the hidden layers, and fuzzy

and concave decision regions are considered in the process. “or” at the output layer.
Index Terms—Classification, fuzzy MLP, knowledge-based net- |n' this article we considgr a new idea of knowledge en-
works, rule generation. coding among the connection weights of a fuzzy MLP [10].

The methodology involves development of a technique for
generating an appropriate architecture of the fuzzy MLP
[10] in terms of hidden nodes and links. To demonstrate its
NOWLEDGE-BASED networks [1], [2] constitute asjgnificance an application to pattern classification has been
special class of artificial neural networks (ANN's) [3],provided, as an example. The model is capable of generating
[4] that consider crude domain knowledge to generate tR@th positive (indicating the belongingness of a pattern to
initial network architecture, which is later refined in the class) andnegative rules (indicating not belongingness
presence of training d.ata. This process helps in reducing_@;nfea pattern to a class) in linguistic form to justify any
searching space and time while the network traces the optigakision reached. This is found to be useful for inferencing
solution. Node growing and link pruning are also made iy ampiguous cases. Note that, the rule generation procedures
order to generate the optimal network architecture. described in this article are different from that reported in
Connectionist expert systems [5], [6] use the set of COPr1] The model is capable of handling input in numerical,
nection weights of atrained neural net for encoding the iy istic, and set forms, and can tackle uncertainty due

knowledge base for the problem under consideration. Thes€, erapping classes. The knowledge encoding procedure,
models are usually suitable in data-rich environment. Whe Alike most other methods [1], [2], involves a nonbinary
fuzzy neural net constitutes the knowledge base, we call %ighting mechanism T

model a neuro-fuzzy expert system [7]. This accommodateﬁt is found that the classification performance improves

tzzrgfégs ;)éan?il:/:;)-ﬂ;z;g Sggﬁtlgl:?lzﬁ;a%zagﬁ:zﬂ’ ifr?L:al;[( aPtpreciany with the encoding of the initial knowledge in the
’ PaVILY., y 9 ' PEEtwork architecture. The proposed network model converges

system design. Recently, there have been some attemptsmll?ch earlier and hence more meaningful rules are generated

improving the performance of connectionist expert systerg§ this stage as compared to the other models. A brief de-
using knowledge-based networks. Such a model has the ca-

pability of outperforming a standard MLP as well as Othescription of the fuzzy MLP used is provided in Section II. In
related algorithms éection Il we introduce the knowledge encoding methodology

that makes it more efficient. The algorithms for rule generation

" - ved Julv 6. 1995 revised October 10. 1996 and J are provided in Section IV. The model is implemented on
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Il. THE Fuzzy MLP MODEL I1l. KNOWLEDGE-BASED CLASSIFICATION

In this section we describe the fuzzy MLP [10] used. The In this section, we formulate a methodology for encoding
output of a neuron in any laydih + 1) other than the input a priori initial knowledge in the fuzzy MLP. Our concept is
layer is given as based on the fact that if a classifier is initially provided with
some knowledge from the data set, the resulting searching

space is reduced thereby leading to a more efficient learning.

1+ exp <—Zyi(h)w§'};)> The_ architecture o_f the network may become simpler due to

2 the inherent reduction of the redundancy among the connection
- . . _ weights. The network topology is then refined using the train-
wherey;™ is the state of théth neuron in the precedinbith  jng data. Scope for growing hidden nodes and pruning links,
layer andw,(»?) is the weight of the connection from théh when necessary (as determined by the network performance),
neuron in laye(h) to thejth neuron in laye(h+1). For nodes enables the generation of a near optimal network architecture
in the input Iayer,y§°) corresponds to thgth component of with improved classification performance.
the input vector. The mean square error in output vectors is
minimized by the backpropagation algorithm using a gradieAt Knowledge Encoding
descent with a gradual decrease of the gain factor.

) 1
y = (1)

Let an interval[F},, F;,] denote the range of featutE;
covered by clas®’;,. Then we denote the membership value
A. Input Vector of the interval asu([£},, F},]) = pu (betweenF}, and F},)

An n-dimensional patterd’; = [F;;, Fio,-- -, F;;,] is rep- and compute it as [13]
resented as 8n-dimensional vector [13] ji(betweent;, and I, )

Fi = [Nlow(Fil)(Fi)v /vLmedium(Fil)(Fi)v = {u(greater thath) * u(less thansz)}l/Q (4)
I’L}lig}l(El)(Fi)7 T 7ullig11(Fm)(Fi)] where
= [ng)a y§0)7 T yé%)] (2) _ 1/2
o o p(greater thar?,) = {u(Fj,) 12 if Fj, < cprop
where they values indicate the membership functions of the — {N(FJI)}Q otherwise (5)

corresponding linguistier-sets [14], [10] along each feature

axis. The input can be in numeric, linguistic or set form andnd

can have modifiersery, more or less (maql)or not attached N N1L/2 i

to it as described in [13]. We ensure that any feature value p(less thans, ) _{M(FM)}Q "L . = Cprop

along thejth axis for patterr; is assigned membership value ={u(£3,)}" otherwise 6)
combinations in the Corresponding three-dimensional (3_%recprop denotesjjl 2 Cins andcjh for each of the Correspond_
linguistic space of (2) in such a way that at least one @ig three overlapping fuzzy selsw, medium,andhigh as in
ow(F: ) (Fi)s Bmedium () (Fi) OF puign(r,,) (i) 1S greater [10]. The output membership for the corresponding cldgs
than 0.5. This heuristic ensures that each pattern point beloRg$ound using (3). Note that, for the computationzgf [14]
positively to at least one of the linguistic sétsv, mediumor  of (3), F;; is replaced by the mean of the intenjdl;, , F},]

high along each feature axis. of the jth feature.
_ We have also considered the intervals in which a class is
B. Output Representation notincluded. The complement of the intend;, , £;,] of the

Consider ani-class prob'em domain such that we hdve featureFj is the region where the Claﬁé‘k does not lie and is
nodes in the output layer. The desired outpijt € [0,1]) of defined agF;,, F;,]° (whereS denotes the complement 5.

the kth output node for théth input pattern, is defined as [14] The linguistic membership values ¥}, , £, ]° is denoted by
1 ([ Ly, Fy,1°) = 1 (not betweerF;, andF}, ) and is calculated

— 3) as
Zik €

1+ <fj> p(not betweenF;, and Fj,)

= max{p(less thant’;, ), u(greater than¥; 7
where ;. (F;) is the membership value of thigh pattern in n i) mlg Y
classCy, 7, is the weighted distance of the training pattersince not betweerd; and F;, = less thanF;, OR greater
F; from C;, and the positive constant§; and f. are the than Fj,.
denominational and exponential fuzzy generators controllingLet the linguistic membership values for class;
the amount of fuzziness in this class-membership set. Thigy the interval [I},, F;,], as calculated by (4)—(6), be
influence the amount of overlapping among the output classe€s([F},, £, 1), i ([Fy, F, ), pu ([Fy,, F,]) ). Similarly
Note that, here we have used a (nonlinguistic) definition of ttier the complement of the interval, using (7), we have
output nodes which indicates the degree of belongingness of PR oI PR
a pattern to a class. However, this definition may be suit- {5 Fi ) paa (1Fs Fi ) o ([ Fi )}
ably modified in other application areas to include linguisti& fuzzy MLP with only one hidden layer is considered,
definitions. taking two hidden nodes corresponding [15;, , F;,] and its

di, = pi(F;) =
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complement, respectively. Links are introduced between the k
input nodes and the corresponding nodes in the hidden layer

iff f/vLA([‘FjUsz]) or NA([Fjlvsz]c) z 05VJ

where A € {L,M,H}. The weightw,(i) ;.. between the
ko, node of the hidden layer (the hidden node correspond-
ing to the interval[F},, F,,] for class Cx) and j,(m € Pk * €4
{first(L), secondM ), third(H)})th node of the input layer
corresponding to featuré) is set by

[1-Px)+ €3

(0)
ko pjm

low medium high
(8) 9

< Fi

=prte€

W

where Pk 1S the a prioni prol:_)abn_lty of cIasst anq €IS Fig. 1. An example to demonstrate knowledge encoding.
a small random number. This hidden node is designated as

positivenode. A second hidden nodg, is considered for the
complement case and is termedegativenode. Its connection is given by
weights are initialized as y,(f) _ f(y,ii’w,i?a N Z O.Sw&)r) (10)
w | =1-p)te (©) o
where f(-) is the sigmoid function as in (1) and the hidden
Note that the small random numbeis considered to destroy nodesk, correspond to the intervals not represented by the
any symmetry among the weights. Thus for/eslass problem convex partitiona. Thus for a particular classj, we have as
domain we have 2| nodes in the first hidden layer. In ouhany equations as the number of intervals (includiot) used
algorithm we have considered the following two cases.  for approximating any concave and/or convex decision region
« All connections between these 2| hidden nodes and &l. Thereby, we can uniguely compute each of the connection
nodes in the input layer are possible. The other weighmeightSw,(fk)a\m (corresponding to each hidden noklge and

are initially set as small random numbers. class Cy, pair).
* Only those selectedconnection weights initialized by The network architecture, so encoded, is then refined by
(4)-(9) are allowed. training it on the pattern set supplied as input. In case of

It is to be mentioned that the method described abovall connections” between input and hidden layers, all the link
can suitably handle convex pattern classes only. In caseVgights are trained. In case of “selected connections” only the
concave classes we consider multiple intervals for a featfielected link weights are trained, while the other connections
F; corresponding to the various convex partitions that may i6&e kept clamped at zero. If the network achieves satisfactory
generated to approximate the given concave decision regiggrformance, the classifier design is complete. Otherwise, we
This also holds for the complement of the regionfilp in  resort to node growing or link pruning.
which a particular clas€’;, is not included. Hence, in such
cases we introduce hidden nodessitive and negative for B. An Example
each of the intervals with connections be_ing established by _(8)Consider the network depicted in Fig. 1. Let the output node
and (9) for the cases of a class belonging and not belongipg.orresponding to a class; be connected to two hidden
to a region, respectively, such that we get multiple h'dd%deskap andk,  via connection Weighta;,(fk)a andw,ﬁ?ﬂ .

nodes for each of the two cases. In this connection it is o o . [ep
- Let classCy, lie in the interval[F; , F},] of input featuref’;.
be noted that a concave class may also be subdivided igip . 4 .
) ) en the weights between the input and the hidden layer are
several convex regions as in [15].

Let there be(kpos + kneg) hidden nodes, where,.s = initially set from (8) and (9) as
Yo, ko, and kg = Yo, ko,, generated for clas€y (0)

: Wy i, =Pk +ea
such thatk,e,s > 1 and k,e, > 1. Now connections are (O)P
established betweekth output node (for clas€’y) and only Wi ju = Pk + €2
the correspondingk,,os + kneg) hidden nodes. We assume that
if any feature value (for class}) is outside some intervat, and
the total input received by the corresponding hidden niade (0) —(1—
. . Wk i — ( pk) +e3.
is zero and this thereby produces an outp,@ﬁ = 0.5 due to "
the sigmoid nonlinearity of (1). In the case of the network witlll connectionsthe other
The connection weights{;) between theith output node weights between the input and the hidden layers (e.g.,
and the k,th hidden node is calculated from a series ab,ii) jM,w,(fi) jL,w,gi) jH) are initialized by small random

equations generated as below. For an intervals input for values. On the other hand, in the case of the network with
classCy, the expression for outplyg) of the kth output node selected connectionthese are not considered at all.
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Substituting (10) in (1), we have D. Growing of Hidden Nodes
(2) 1 If after a certain number of epochs (experimentally deter-
L EY N EY) SINEY (11) mined) the classifier still does not recognize a certain class
1+ exp{—(y wyy, + 05wy )} oo
4 ? " C;, well and the network size is not too large, we resort to

wherey,(f) is the output of thekth output node ang,gi) is that @adding a hidden node _(instee}d of pruning) to our knowledge—.
of the hidden node, corresponding to the preserfted inter\}&"f‘,sed model. Connection Welght's are establlshed between this
connected to théth output node. From (11) we have new node and all the classes. Links are also introduced from
all input nodes to this newly added node. Now training is
allowed on these new connection weights for a few epochs
(again empirically set) using only those samples which are
in class Cy while keeping all the other links frozen. Then
Similarly, considering the complement-intervidl;,, F7;,]° of g the links are retrained with the entire training set and the

@)
u) wiy + 05wy = 1 i = (12)
e

the featuref;, we can write process of adding, freezing, and retraining are continued, until
2) 1 all the classes are reasonably well recognized. Note that, other
L=y = (13) approaches for growing of nodes in ANN’s may be found in

- (1 1 1 )
1+ eXP{—(O-sz(ek)ap + Vo, Wi, ) [18] and [19].
Therefore
(2)

1—
05“}&)% +yﬁ)w1§1& —1n Y (14) IV. RULE GENERATION

y;(f) The trained knowledge-based network is used for rule
generation inif-then form in order to justify any decision
reached. These rules describe the extent to which a test pattern
Hblongs or does not belong to one of the classes in terms of

The outputSy,(i) and y,(i) are calculated using (1) with

appropriate inpﬁt values. Then from (12) and (14) we c
(1) L

evaluatewkkap and wy, . antecedent and consequent clauses provided in natural form.
We use two rule-generation strategies as described below. The
C. Pruning algorithms are, however, different from that reported in [11].

A large number of connection weights in a network often Method (i) Treating the network as a black-box and us-
results in redundancy, leading to the problem of just mem- ing the training set input (in numeric and/or
orizing the patterns. In such cases pruning of less important linguistic forms) and network output (with con-
links and/or hidden nodes is incorporated in order to get a fidence factor) to generate the antecedent and
near optimal network architecture and thereby enhance the consequent parts.
generalization capability. There exists various algorithms for Method (ii) Backtracking along maximal weighted paths
pruning [16], [17] ANN's. Here we have incorporated link using the trained net and utilizing its input
pruning of the knowledge-based network in a slightly different and output activations (with confidence factor)
way. for obtaining the antecedent and consequent

A connection weight is pruned if its contribution toward clauses.

the network output is least significant during the presentation

of the training set. Therefore, the Iirﬂ@%b) in layer (h) is  A. Using Numeric and/or Linguistic Inputs—Method (i)

pruned if In this method we use an exhaustive set of numeric and/or

OO Ry, (h) linguistic inputs al_ong with their hedges at the input for
iji N Zwkmym (15)  antecedent clausesf fparts). We have a total af* patterns
p 7 p (corresponding tovery, mol,and not for each of linguistic
where the summation is taken over all the pattesris the valueslow, mediumandhighof each of the features) for a data
training set and theminimumis computed over the indicesset with n features. These patterns constitute the antecedent
k,m. part of the rules. In the case of numeric patterns, the distance
When a network with large number of connection weightsetween thepth pattern and each of the linguistic pattern
results in poor classification performance after a certain nuwectors are calculated. The linguistic pattern closest tgthe
ber of epochs, links between layegiis+ 1) and (h), for each pattern determines the antecedent part of the rule [11].
(h), need to be selected for pruning by (15). The resulting To generate the consequent part of the rule, we use a
network is retrained for a few more epochs and this processasure which reflects the amount of difficulty in arriving
is continued till we get a satisfactory recognition score.  at a decision by minimizing the ambiguity in the computed
Note that, we do not resort to node pruning as the numberaiftput vector. Aconfidence facto(CF) is defined [13] as
hidden nodes are initially encoded with the domain knowledge
and are, therefore, not redundant. During refinement by train- 1 1 <& )
ing, it is the growth of extra links that leads to redundancy. @ CF= 3 {ySD e+ 1 Z{yfﬁa{x - yj( )}
Hence it is our objective to prune a few such redundant links j=1
to improve the generalization capability of the network. 0<CFL1 (16)
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where i, = maxi_; {y{”'},4\”) is the jth component in of each featuref} so that
(2) indi

the output vectoyy ) [py (11], and fi,ax indicates the number wj(?l ygg) -  max wj(?l)3 ygg) (18)

of occurrences of;12, in ¥®. Note that CF takes care of the AT Be{L,M,H}

fact that the difficulty in assigning a particular pattern clagg

dgg)ends hot only on the highest entry in the output VeCtE)f-I). The 3-D linguistic pattern vectdow, mediumor high

its di 2
Ymax but also on its _dn‘ferences from the other entrgej@_. with or without hedges [corresponding to the linguistic feature
It_ |§ seep that .th.e higher the value of CF, the_lower is thpiA computed by (18)], which is closest to the relevant 3-D
difficulty in deciding a class and hence greater is the degrggyt of patternk,, is selected as the antecedent clause [11].
of certainty of the output decision. Based on the value of Ciryis i done for all input features to which a path may be found
the system makes the following decisions \gf)nle g(e2r)1erat|ng th (17). The completé part of the rule is found by ANDing
consequent clausénenpart) of the rule. Ley,™ = yuax SUCh  the clauses corresponding to each of the features, e.g.,

that the pattern under consideration belongs to o&ssWe i i
have If 71 is mol A and F5 is not A and

1) if (0.8 < CFR, < 1.0) then very likely classC}, and -+ and £, is very A.
there is no second choice;

2) if (0.6 < CF, <0.8) then likely classCy, and there is
second choice;

3) if (0.4 < CF, < 0.6) then mol likely class”y, and there
is second choice;

4) if (0.1 < CF,<0.4) then not unlikely class’;, and
there is no second choice;

here A and B correspond to low L), medium(}) or high

1) Negative Rulesit may sometimes happen that we are
unable to classify a test pattern directly with the help of the
positiverules (concerning its belongingness to a class) derived
by any of the above two methods. In such cases, we proceed
by discarding some classes which are unlikely to contain the
pattern, and thereby arrive at the class(es) to which the pattern
X i possibly belongs. In other words, in the absence of positive

5) if (CF, <0.1) then unable to recognize clagg;, and jnformation regarding the belongingness of pattErnto class

there is no second choice. C;., we use the complementary information about the pattern

To obtain a second choice corresponding to a pattern clgss not belonging to clas€’. To handle such situations, we
Cr, (say), we find theconfidence factoCF,, for the second have generatedegativerules with the consequent part of the
highest entryy,g) in the output vector using (16). There mayorm not in classCj: by backtracking from the output layer
be some cases where there are multiple entries with the hightesbugh the trained connection weights. Note that,ffasitive
value yffix in the output vector. In that case, there will notules we traverse the hidden noklg, while for negativerules
be a second choice of pattern class. Instead, the form of thie backtrack along the hidden nodg, .
consequent will belikely classCj, or C;” where the output  Let an input patternf’, from the training set be presented
values corresponding to classé€g and C; both have the to the input layer of the trained network such that the output

highest Valueyffa)m. of the node in the output layer corresponding to the class
Identical rules, if any, are discarded from the generated rulé- is minimum, i-e-,y,(f) = minz{yz@)}- Therefore, we are
set. certain that the pattern is (possibly) not included in the class

Cy.. Hence, the consequent part of the corresponding rule

. . . becomesot in classCy-. The antecedent part of the rule is

B. Backtracking Along Trained Connection . ;

Weights—Method (i) obta_lned by back'Fracklng fro_m the outpu_t n_ddethrough the

maximal path using (17) with the restrictions that now we

An input patternF’, from the training set is presented toconsider the absolute values of the individual product terms.

the input of the trained network and its output computed. Thgye corresponding rule, so obtained, is of the form

consequent part of the correspondifighenrule is generated i .

by (16) as described in Section IV-A. To find the antecedent If £y is molAand .- and £, is very A

clauses of the rule, we backtrack from the output layer to the then the pattern is not in clags, .

input through the maximal yvgighteq links. The path from Imdﬁote that the approach in [11] did not consider such negative
k in the output layer to nodg, in the input layer through node rules Y

g in the hidden layer is maximal if It is worth mentioning that the above rule generation tech-

O @ © (0 O W © © niques can also handle the situations Where the input is given

wi Yy T wgin i, = max{wiiyn) +w y;0 b (17) in set form. In other words, the feature informatidf) of
a test pattern is neither linguistic nor numeric, but may be
available as 1)F; > I}, some lower bound; 2F; < Fj,,
s i, some upper bound; or 3) in some interyal, , F;,] such that

computed over the index. Here the path length fr(()lr? (r‘l‘))deFj lies betweenF;, and Fj,. In these cases, the linguistic
k in the output layer to nodg in the hidden layer isv; 'y, yalueslow, medium, higrcorresponding to the input given in
and notw,%) as defined by Mitra and Pal [11] in an earliethe set form and hedges are evaluated from (4)—(6). Then the
approach. Besides, the CF of (16) is also different and inle with this antecedent is picked up, and we take a decision
certain ways better than tHeelief used there. We consideron the basis of the corresponding consequent part regarding
only one node 4 corresponding to the three linguistic valuedts class (as explained earlier).

provided thaty](l) > O.S,y(3)>0.5, and the maximumis
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Fig. 2. An example to demonstrafeositive and negativerule generation The path length from the output nodeto the input node
using method (ii). i via hidden nodej is denoted by patfy;. Therefore, from
Fig. 2 we find the following path lengths: pé% = 0.7 %
2) An example:Consider a knowledge-based networly s _ 49 Paﬂﬁ& —08%08 = 0.64 pathgoL) — 039 and
(Model AN) given in Fig. 2 demonstrating the rule generation_, 0y L ) ’ 0)
technique using method (ii). We have considered the feat atrg.M = 0.56. Note that,_patﬁH and patléH have not been
9 9 , Snsidered as the activation of the input nadeis less than
£ for the antecedent clause. Only the clasSgandC with g 5 -0 o1 inputs received by the hidden nodes 1 and 2

maximum and minimum outputs, respectively ((?n present e found to be 1.08 and 1.0, respectively. Therefore, the
a pattern at the input layer), have been considered for the. _.. 1) . )
" it d i les. The hidd d activations of these nodes ayé = 0.75 andy;’ = 0.73,
generation ofpositive and negativerules. The hidden no es.respectively by (1). The path lengths between the nodes in
1 and 2 correspond to two convex segments of the regign .
-Ythe output layer and the hidden layer are éﬁth: 9.0 and
represented by the clag%,, and 3 corresponds to the region D h I nath | h found to b B
complement to clas€’. Similarly, for the clas<”;,, we have path; = 8.4. T_e total pat engi s are found to e_%ﬂq_
considered the hidden node 4 corresponding to the region90[1l2’pat%1M . 9‘?4’ pat?v% _h 8'79’patll‘éM = 8.96. di
the clas<”},, and 5 and 6 correspond to the region other tht etnhce, tl esrgaﬂmabtpf_:\t drom tthe ou:rp])ut_nothe chc_);r(;aspon (;ng
classC;,. Thus, nodes 1 and 2, and 4 represent fbsitive 0 he classt;. 1S obtained as the path via the hidden node

nodes for classe€; and C,, respectively. Similarly, the 1 to the input nodeM (the selected path consists of the

nodes 3, 5, and 6 denote thegativenodes for classes), links joining the nodes indicated by_sohd circles in Flg. 2).
. The antecedent clause corresponding to the feaftres
and Cy, respectively.

A pattern with linguistic values lo6Z) = 0.6, mediur( M) F; is mol mediunt and is obtained by finding the closest

= 0.8, and higl{H) = 0.2 of feature F; is presented to the match of the 3-D vector corresponding to the fealiile to

input layer of the network. Assume that the activations of tht(re1e respective linguistic pattem (with/without hedges). The

output nodes corresponding to the clas§ksand C are 0.9 conseqllgent part of the rule very likely clasCj, as obtained
and 0.1, respectively. Therefore, backtracking starts from tﬁglznor(the). eneration aieqativerule. we compute the follow-
output node corresponding to the claSs and searches for . th Ig th .| ﬁ& g O“eru ,ﬂ\%vo) -~ Op;2 ﬂ(bo) _W

the maximal path through the hidden nodes 1 and 2 only E}g ba Sng S paji =0 ?,pa SMo T -Paliyy -

the activations of these nodes are at least 0.5pésitiverule -39 pattf;y, = 0.38. The total inputs received by the hidden
generation. For theegativerule generation, it starts from the"°des 5 and 6 are 0.79 and 01')81’ respecuvel%/l.)Therefore, the
output node corresponding to the clags and searches for COrresponding activations arg” = 0.69 andys” = 0.69.

the maximal path through the hidden nodes 5 and 6 only (if ti&'US: the path lengths between the nodes in lt)he output layer
outputs of these nodes are at least 0.5). The links with weig@ad the hidden layer are path=9.52 and pathf = 10.35.

as shown in the figure are obtained during training. For clarieg'e total path lengths are pgth, = 9.97,path.;,, =

of the figure, we have not considered the links from hiddeh®4: Pathve = 10.74, pathq,, = 10.73. Hence, the maxi-
node 3 toL, M, and H corresponding to the featudé; as we Mal path from the output node corresponding to the ofgss

do not require these links for the generationpokitiverule. 1S obtained as the path via the hidden node 6 to the input
Similarly, the links from the hidden node 4 to the input nodg&°de L (the path consisting of the links joining the nodes
L, M, and H are not shown. indicated by circles with dots inside in Fig. 2). Therefore,

We denote the path length [as explained by (17)] froffte cqrresrfon_dingbar?te%edent_ Cla# SE; isllmol low? ththe h
the hidden nodej to the input nodei by patfﬂo) and that Negativerule is obtained as in the earlier case. Thus, the

. g 1) negativerule is: If £} is mol low then the pattern is not in
from the output nodet to the hidden node by patlij. class Gy .
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Fig. 4. Vowel data.
V. EXPERIMENTAL RESULTS hepatobiliary disorders alcoholic liver damage (ALD), primary

In this section we compare the classification and rule gef¢Patoma (PH), liver cirrhosis (LC) and cholelithiasis (C),

eration performance of the proposed knowledge-based mog@fistitute the four output classes. In this case, 30% of the

with that of the conventional and fuzzy versions of thgriginal data set comprises thraining set while the remaining
MLP [10], [11], and the fuzzy min-max neural network [12]70% data forms theestset. In the case of the medical data

both on synthetic and real-life (speech and medical) da¥¢ have assumed the pattern classes to be convex as it is
In all the cases the data sets have been divided into tRin€rwise very difficult to visualize the exact nature of the
subsets—training andtesting The synthetic datRat1 (Fig. 3) nine-dimensional feature space.

contains two input features, two pattern classes, and consist 1S found that the knowledge-based model converges to

of 557 pattern points. As the class structures are concave, §°0d solution with a very small number of training epochs

have found approximately (by inspecting the feature spac@ rations) in all the four cases. Note that, we have used the

the set of intervals of the features where each of the pattdfjowing four knowledge-based models designated as follows:

classes lie (or do not lie). The networks are trained with 10% all connections with net Model AN

of the original data while the remaining 90% data constitutes

the test set. ] ]
The speech datdowel deals with 871 Indian Telugu vowel selected connections with notModel SN

sounds. These were uttered in a consonant-vowel-consonant selected connections without notModel S

context by three male speakers in the age group of 30 FEO .
35 vears. The data consists of three feat F dF esults are compared with those of the fuzzy MLP_(ModeI
y ! utgss, and I ? the conventional MLP (Model C), and the fuzzy min—max

corresponding to the first, second, and third vowel formaﬁ

frequencies obtained through spectrum analysis of the spe@gﬁwork (M(_)del FMM). [12]. Thg numbgr of links required in
data. Fig. 4 provides the plot in the — I plane for ease of each case is appropriately indicated (in parenthesis after the

depiction. The data contains six vowel classés-a; i, U, e, 0 name of the corresponding model) in the tables. The variables

represented as 1, 2, 3, 4, 5, and 6 in the sequel.tiEieing fa and fe of (3) were s_et at 5.0 and 1.0, respe_cnvely [10],

set contains 10% of the original data set. for the speech and medical data. For the synthetlc data we use
The medical datddepato, consisting of nine input featuresd’“ € 10,1} and hencef and f. are not required.

and four pattern classes, deals with variddepatobiliary o

disorders[20] of 536 patient cases. The input features are tfe Classification

results of different biochemical testdz., glutamic oxalacetic ~ Table | depicts the result obtained wiBatl data. A total

transaminate (GOT, Karmen unit), glutamic pyruvic transanof six intervals (i.e., six hidden nodes) for the two features

inase (GPT, Karmen unit), lactate dehydrase (LDH, iu/lgre found to be sufficient to characterize the classes if we do

gamma glutamyl transpeptidase (GGT, mu/ml), blood ureet consider the intervals in which any of the classesds

nitrogen (BUN, mg/dl), mean corpuscular volume of red blooihcluded[(4)—(6) only]. This is termed as theithout notcase.

cell (MCV, fl), mean corpuscular hemoglobin (MCH, pg), totaDtherwise, if we consider both the intervals of the features in

bilirubin (TBil, mg/dl) and creatinine (CRTNN, mg/dl). Thewhich a classis includedand is not included we require a

all connections without not Model A
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TABLE | TABLE I
PERFORMANCE OF DIFFERENT MODELS ON Patl DATA PERFORMANCE OF DIFFERENT MODELS ON Vowel DATA
Model Class Score(%) Model Class Score(%)

Training | Testing Training | Testing

AN (82) 1 1000 | 100.0 1 42.86 | 27.69

2 0.0 0.0 2 87.5 86.42

Overall | 83.64 | 82.47 AN (138) 3 94.12 | 87.74

A (47) 1 100.0 | 100.0 4 100.0 | 82.35

2 100.0 | 100.0 5 90.0 69.52

Overall | 100.0 | 100.0 6 100.0 | 93.83

SN (< 82) 1 100.0 | 100.0 Overall | 90.59 | 78.63

2 100.0 | 100.0 1 0.0 0.0

Overall 100.0 100.0 2 62.5 58.02

S (<47) 1 100.0 | 100.0 SN (< 138) 3 94.12 | 87.74

2 0.0 0.0 4 100.0 | 82.35

Overall | 83.64 | 8247 5 85.0 68.45

1 1000 | 100.0 6 94.44 | 93.21

FMM (84) 2 100.0 | 84.09 . Overall | 82.35 | 73.79

Overall | 100.0 | 97.21 1 71.43 | 30.77

1 100.0 | 100.0 2 100.0 | 80.25

FMM (48) 2 53.56 | 48.86 3 100.0 | 91.61

Overall | 92.73 | 91.04 FMM (504) 4 86.67 | 72.06

5 95.0 62.57

6 88.89 | 83.80

total of ten intervals (i.e., ten hidden nodes). This is called the Overall | 91.76 | 73.92
with notcase. It is observed that models A and SN give 100% 1 71.43 75.38
recognition score in just 600 epochs. The other models (AN 2 50.0 41.98
and S) have not been able to recognize class 2 at this stage. 3 76.47 | 7419
In model AN, perhaps the large number of interconnections FMM (198) 4 33.33 | 43.38
encode too much redundant information thereby not enabling 5 65.0 68.98
the classifier to recognize class 2. On the other hand, model S 6 4444 | 3519
provides poor result probably due to under-information. The Overall | 56.47 | 56.36

performance of C and F is the same as that of AN and S.
That is why we have not included the results for C and F in
Table 1. and fuzzy, thereby generating fuzzy output class membership
We have resorted to pruning of links in models AN, F andalues that require storage of more information than in case
growing of hidden nodes in cases of models S, F, C. It & crisp class membership values. Perhaps this accounts for
found that after only 100 epochs of growing the model Shhe better performance of model AN (with more connections).
provides overall recognition score of 100% on the training sktodels C and F were unable to recognize classes 1, 2, and 4,
and 99.8% on the test set. This demonstrates a remarkedmel fared the worst (overall recognition score during training
improvement in performance. Hidden nodes were also addsud testing being 42.35 and 39.19% for the model C, and
to models C and F at the same stage but the performanc&%s29 and 52.93% for the model F). As before, their details
found to be poor (0% recognition for class 2) in casd’afl are not mentioned in the table to restrict the size of the
data. Pruning model AN resulted in 100% recognition scoresticle.
for both the training and test sets. The links were pruned fromAs model AN performed reasonably well for all classes
600 epochs at intervals of ten epochs, up to 750 epochs, amitially (before growing), the incorporation of additional hid-
then the network was trained until 900 epochs. Although mod##n nodes did not improve the results in this case. However,
F could now recognize around 20% patterns from class 2, thdien model SN was augmented for class 1 it was found that
was considerably less than that by model AN. after 350 epochs the model could recognize 14.29% of class 1
Table 1l shows the results obtained wiklowel data. Since during training and 1.54% during testing. The overall scores
all the classes in the feature space are convex, we use twse to 83.53 and 74.17% for the training and testing sets,
hidden nodes for each of the classes. Hence avith not respectively. The results are depicted in Table llI.
models have been considered and we require a total of 12Zrable IV demonstrates the classification performance for the
hidden nodes for this data set. The results demonstrate timdical datddepatowhere classes 1, 2, 3, and 4 correspond to
model AN gives acceptably good performance in just 2aBe four disease classesl.D, PH, LC, and C, respectively.
epochs whereas model SN cannot do the same due to undiéote that here we do not know priori the shape of the
information. Note that, the vowel classes are overlappimmttern classes in the nine-dimensional feature space. We have
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TABLE 1l TABLE IV
EFrFecT oF ADDING HIDDEN NODE ON THE PERFORMANCE OF PERFORMANCE OF DIFFERENT MODELS ON Hepato DATA
THE VARIOUS KNOWLEDGE-BASED MODELS ON Vowel DATA
Model Class Score(%)
Model | Class Score(%) Training | Testing
Training | Testing 1 41.18 37.80
1 42.86 | 23.08 F (260) 2 90.57 | 89.60
2 87.5 838.89 3 2.70 9.20
3 9412 | 87.74 4 91.43 92.77
AN 4 100.0 82.35 Overall | 59.75 60.48
5 90.0 70.05 1 61.76 | 52.44
6 1000 | 93.83 AN (236) 2 84.91 | 77.60
Overall |  90.59 78.63 3 59.46 43.68
1 14.29 1.54 4 91.43 86.75
2 62.5 58.02 Overall | 75.47 | 66.31
3 94.12 92.26 1 0.0 0.0
SN 4 100.0 | 84.56 SN (< 236) 2 98.11 | 100.0
5 85.0 66.84 3 0.0 0.0
6 94.44 | 93.83 4 0.0 0.0
Overall | 83.53 417 Overall |  32.70 33.16
1 76.47 32.93
) ) 2 90.57 60.0
assumed that the classes are convex, so that only eight hldden FMM (2068) 3 43.65 230
nodes are used corresponding to the four classes. As in the 4 32.86 5549
case ofVowel, only the knowledge-based modeéi® and SN Overall | 76.10 39.79
have been used. Since we have approximated the structures of 1 582 0.0
the classes as convex, model SN which uses only those links 9 100.0 100.0
that are encoded with the initial knowledge performs rather FMM (236) 3 18 9'2 06
poorly. Perhaps it would require more nodes and links than } 4 0'0 0‘0
were available under our assumption. However, model AN, - -
L . . Overall | 39.62 | 33.16
which is allowed to grow extra links, is found to have solved

this problem. Its performance is considerably better than that
of models SN and F in just 500 epochs (Table IV). Note th requires about twice to thrice this time to reach the same
the model C, being unable to recognize classes 1, 3, and 4 is q
. . evel of performance. In contrast, fafowel data, Model F
not included in the table.
e surpasses model SN at around 500 sweeps (as seen from
Tables I, Il, and IV also show the classification performanc'g ;

. ig. 6). However, Model AN/A is always the best perhaps
of the fuzzy min-max neural network (model FMM) [12] on ue to the presence of less redundancy (than Model F) alon
the three data sets. In this model, the number of links can% b Y g

varied by altering some of the parameters. Here we show t\ﬁ'ﬁh more knowledge (than Model SN). Note that, Tables |

results for two different configurationsgz., 1) providing mol and Il depict the performance of the knowle_zdge based models
o . at 600 sweeps (epochs), respectively. This accounts for the
the same overall recognition score (on the training sets) as_.. .
- relatively poor performance of Model F at this stage, whereas
the proposed model and 2) providing mol the same numbl?rfares better with longer training time (as is evident from
of links as the proposed model. Note that, the model A f 9 9

Patl (Table 1), and model AN for botivowel (Table II) and ?ﬁe figures).
Hepato (Table IV) have been compared for this purpose, as i
they perform the best. It is clear that the model FMM requirds Rule Generation
more links than the proposed model to get mol the sameTables V and VI compare the rules generated Ratl
overall recognition score. Similarly, with mol the same numband Vowel data, respectively, by the methods described in
of links the model FMM performs poorer for all the datéSection IV using the proposed knowledge encoded networks
sets. and the fuzzy MLP [10]. The rules generated on the various
Figs. 5 and 6 depict the variation a@fiean square error models are not identical due to the different amounts of
with the number of sweeps for pattern s@@tl and Vowel, redundancy inherent in them and the difference in the encoding
respectively. In the case #fatl we demonstrate the behaviorof their network architectures. Method (ii) often produces
of the two better knowledge-based models A and SN onlgifferent results (as compared to method (i) where only the
for ease of explanation. It is observed that model C has timput and output of the neural net are considered) because here
worst performance. Model A (foPatl) and model AN (for the trained connection weight magnitudes are utilized during
Vowel) behave the best. Itis found that Model SN is better thahe tracing of the maximal weighted paths, thereby using the
Model F in the beginning and converges to a good soluti@mcoded and refined domain knowledge along with the test
very fast (in about 600 sweeps in Fig. 5) féatl while Model case feature values.
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1) Negative Rules:Let us consider the trained connectionnput layer of the network, the output produced by the
weights w,sk) of the knowledge-based network in the caskidden nodes is greater than those hy, hidden nodes
of Patl to explain the generation ofiegativerules. It is (or sometimes comparable in magnitude when the weights
interesting to note that the welghtskk) connectingk,,, w&)a and w(k) ., are also comparable). But in such cases,
nodes in the hidden layer with the correspondkih output the Sutput produced by th&/, nodes is always found to
node are found to be negative, whereas those connekting be greater than those by, nodes. The hidden nodes 1,
nodes are positive for each of the classés. Therefore, 2, 3, and 4 correspond to the intervals to which class 1

when a pattern belonging to cla€$, is presented to the belongs, while node 5 refers to the interval in which class
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TABLE V
RuLEs OBTAINED BY DIFFERENT MODELS FOR Patl
Model Antecedent Consequent
Method (i) Method (ii)
Fy low and likely class 1 but very likely class 1
A F; high unable to recognize class 2
Fy mol medium and mol likely class 2 but likely class 2 but
F, mol medium unable to recognize class 1 | unable to recognize class 1
Fy low and very likely class 1 very likely class 1
SN F, high
F} mol medium and likely class 2 but very likely class 2
F, mol medium unable to recognize class 1
Fi low and very likely class 1 very likely class 1
F F; high
F; mol medium and likely class 2 but likely class 2 but
F3 mol medium unable to recognize class 1 unable to recognize class 1

1 does not lie. The corresponding connection weights areUsing model F:

8.241502, 13.473857, 13.286 455, 8.405158, 16.488 053, andf F} is low and F; is low and F3 is very medium andy

16.458 573, respectively. Similarly, hidden nodes 6 and i§ low and I3 is mol medium andFg is medium andFx is

correspond to the intervals to which class 2 belongs, whiteol medium andFg is mol low andFy is very medium then

the hidden nodes 8, 9, and 10 are indicative of the regitime pattern is not in class 1.

where class 2 is not included. Their connection weights

are —43.487919,-9.280226,—14.061 259, and-9.116 443,

respectively. Considering this, we backtrack aldig nodes V1. CONCLUSIONS AND DISCUSSION

while determining a rule about a pattern not belonging to classA new methodology of knowledge encoding among the

Cy and generate that path having the maximal value for thennection weights of a fuzzy MLP [10] is described. This

magnitude of the product term (as explained in Section IV-Bnables the network to perform classification and rule gener-

for negativerules). ation more efficiently. It involves development of a technique
Two samplenegativerules obtained by method (ii) usingfor generating an appropriate architecture of the fuzzy MLP

the AN and F models fowowel data are provided below.  [10] in terms of hidden nodes and links. Node growing and

Using model AN: link pruning are used to enhance performance. It is found that
If £ is mol low andF; is medium andFs is very low then the knowledge-based classification leads to better result than
the pattern is not in class 4. those of the conventional and fuzzy versions of the MLP [10],
If £y is very high andF, is mol medium andFs is very [11], and the fuzzy min-max neural network [12].
medium then the pattern is not in class 3; During learning an MLP searches for the set of weights
Using model F: that corresponds to some local minima. There may be a large
If £y is high andf% is medium andZ3 is high then the number of such minimum values corresponding to various
pattern is not in class 4. good solutions. The knowledge-based network initially con-
If L7 is very high andFs is mol medium andFs is very siders these weights so as to be near one gocil solution.
medium then the pattern is not in class 3. As a result, the searching space gets reduced and learning

It is seen thatnegativerules offer an useful solution in becomes faster. Note that, unlike the other methods [1], [2], the
cases where no suitablgositive rule can be found. Note proposed knowledge encoding technigue involves nonbinary
that, model F does not have,, or k., nodes encoded in weighting mechanism based on the domain knowledge of a
its structure. We have provided the negative rules in thifata set. The incorporation of fuzziness at various levels also
case by just backtracking along the maximal magnitude patheslps the model to efficiently handle uncertain and ambiguous
from the class producing the minimal output. The rules fanformation both at the input and the output.
model £' are provided as an extension to the approach ofConventional and fuzzy versions of the MLP consider
[11] while also enabling us to make a comparative studgmpirically determined fixed architecture, whereas the
Similarly, a samplenegativerule generated by method (ii) knowledge-based model automatically determines it. The
with the AN and F models for the medical datblepato is fuzzy min—-max network [12] generates hidden nodes from
provided below. some empirically determined parameter values. It is observed

Using model AN: that this network requires larger number of links than

If Fislow andFs is low andF3 is very medium and, is the proposed model to generate mol the same recognition
low and F5 is low and Fg is medium andF; is mol medium score.
and Iy is low and Fy is very medium then the pattern is not Our model is capable of generating bqtbsitiveand neg-
in class 1. ative rules in linguistic form to justify any decision reached.
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TABLE VI
RuLEs OBTAINED BY THE KNOWLEDGE-BASED AND Fuzzy MLP For Vowel
Model Antecedent Consequent
Method (i) Method (ii)
F) medium, very likely class 6 very likely class 4
F5 low and
F3 low
F low, very likely class 3 very likely class 3
F, high and
F3 mol medium
AN Fiy low, not unlikely class 6 mol likely class 6 but
F3 low and unable to recognize class 4
F3 high
F1 high, mol likely class 1 but not unlikely class 1
F> medium and | unable to recognize class 2
F3 very low
Fy very high, mol likely class 2 but mol likely class 2 but
F; low and unable to recognize class 5 | unable to recognize class 5
F3 very medium
F; high, likely class 5 but very likely class 5
F; high and unable to recognize class 3
F3 medium
Fi medium, very likely class 6 very likely class 4
F3 low and
F3 low
Fi low, likely class 3 but likely class 3 but
F> high and not unlikely class 5 unable to recognize class 5
F3 mol medium
F F low, mol likely class 6 but mol likely class 6 but
F; low and unable to recognize class 4 | unable to recognize class 4
F3 high
F1 high, likely class 1 but likely class 1 but
F> medium and | unable to recognize class 2 | unable to recognize class 2
F3 very low
Fi very high, mol likely class 2 but mol likely class 2 but
F3 low and unable to recognize class 1 not unlikely class 1
F3 very medium
F; high, likely class 5 but very likely class 5
F3 high and unable to recognize class 3
F3 medium

These rules are found to be useful for inferencing in ambiguoug] G. G. Towell and J. W. Shavlik, “Knowledge-based artificial neural

cases. Note that, the rule generation algorithms described f&]
this article are different from that derived from fuzzy MLP

in [11]. A comparative study with that algorithm has also[4]
been provided to support this. It is observed that the le
redundant knowledge-based model yields better rules much
earlier. The concept of negative rules has been introducgél
to handle situations where a pattern does not belong to G
specific class with high certainty. In such ambiguous sit-

uations, the complementary case of a pattern certainly not
belonging to a class is considered to provide an appropriatg

explanation.
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