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Abstract—A new scheme of knowledge-based classification
and rule generation using a fuzzy multilayer perceptron (MLP)
is proposed. Knowledge collected from a data set is initially
encoded among the connection weights in terms of classa priori
probabilities. This encoding also includes incorporation of hidden
nodes corresponding to both the pattern classes and their comple-
mentary regions. The network architecture, in terms of both links
and nodes, is then refined during training. Node growing and link
pruning are also resorted to. Rules are generated from the trained
network using the input, output, and connection weights in order
to justify any decision(s) reached. Negative rules corresponding
to a pattern not belonging to a class can also be obtained. These
are useful for inferencing in ambiguous cases. Results on real
life and synthetic data demonstrate that the speed of learning
and classification performance of the proposed scheme are better
than that obtained with the fuzzy and conventional versions of
the MLP (involving no initial knowledge encoding). Both convex
and concave decision regions are considered in the process.

Index Terms—Classification, fuzzy MLP, knowledge-based net-
works, rule generation.

I. INTRODUCTION

K NOWLEDGE-BASED networks [1], [2] constitute a
special class of artificial neural networks (ANN’s) [3],

[4] that consider crude domain knowledge to generate the
initial network architecture, which is later refined in the
presence of training data. This process helps in reducing the
searching space and time while the network traces the optimal
solution. Node growing and link pruning are also made in
order to generate the optimal network architecture.

Connectionist expert systems [5], [6] use the set of con-
nection weights of atrained neural net for encoding the
knowledge base for the problem under consideration. These
models are usually suitable in data-rich environment. When a
fuzzy neural net constitutes the knowledge base, we call the
model a neuro-fuzzy expert system [7]. This accommodates
the merits of neuro-fuzzy computing,viz., parallelism, fault
tolerance, adaptivity, and uncertainty management, in expert
system design. Recently, there have been some attempts in
improving the performance of connectionist expert systems
using knowledge-based networks. Such a model has the ca-
pability of outperforming a standard MLP as well as other
related algorithms.
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Some related works in this area include the model by
Gallant [5], dealing withsacrophagalproblems, that uses
crisp inputs/outputs and a linear discriminant network (with
no hidden nodes) trained by the simplePocket Algorithm. Yin
and Liang [8] incrementally built a dynamic knowledge base
capable of both acquiring new knowledge as well as relearning
existing information. Fu [1] used the initial domain knowledge
(in terms of rules) to generate the network topology, while the
links were weighted to maintain the semantics. Towell and
Shavlik [2] mapped problem-specific “domain theories” into
layered neural networks and then refined this reformulated
knowledge using backpropagation. Machado and Rocha [9]
used a connectionist knowledge base involving fuzzy numbers
at the input layer, fuzzy “and” at the hidden layers, and fuzzy
“or” at the output layer.

In this article we consider a new idea of knowledge en-
coding among the connection weights of a fuzzy MLP [10].
The methodology involves development of a technique for
generating an appropriate architecture of the fuzzy MLP
[10] in terms of hidden nodes and links. To demonstrate its
significance an application to pattern classification has been
provided, as an example. The model is capable of generating
both positive (indicating the belongingness of a pattern to
a class) andnegative rules (indicating not belongingness
of a pattern to a class) in linguistic form to justify any
decision reached. This is found to be useful for inferencing
in ambiguous cases. Note that, the rule generation procedures
described in this article are different from that reported in
[11]. The model is capable of handling input in numerical,
linguistic, and set forms, and can tackle uncertainty due
to overlapping classes. The knowledge encoding procedure,
unlike most other methods [1], [2], involves a nonbinary
weighting mechanism.

It is found that the classification performance improves
appreciably with the encoding of the initial knowledge in the
network architecture. The proposed network model converges
much earlier and hence more meaningful rules are generated
at this stage as compared to the other models. A brief de-
scription of the fuzzy MLP used is provided in Section II. In
Section III we introduce the knowledge encoding methodology
that makes it more efficient. The algorithms for rule generation
are provided in Section IV. The model is implemented on
synthetic, and real-life speech and medical data (in Section V)
for both classification and rule generation. Its performance is
also compared with that of the conventional fuzzy versions of
the MLP and fuzzy min–max neural network [12]. The paper
is concluded in Section VI.
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II. THE FUZZY MLP MODEL

In this section we describe the fuzzy MLP [10] used. The
output of a neuron in any layer other than the input
layer is given as

(1)

where is the state of theth neuron in the precedingth
layer and is the weight of the connection from theth
neuron in layer to the th neuron in layer . For nodes
in the input layer, corresponds to theth component of
the input vector. The mean square error in output vectors is
minimized by the backpropagation algorithm using a gradient
descent with a gradual decrease of the gain factor.

A. Input Vector

An -dimensional pattern is rep-
resented as a -dimensional vector [13]

(2)

where the values indicate the membership functions of the
corresponding linguistic -sets [14], [10] along each feature
axis. The input can be in numeric, linguistic or set form and
can have modifiersvery, more or less (mol), or not attached
to it as described in [13]. We ensure that any feature value
along the th axis for pattern is assigned membership value
combinations in the corresponding three-dimensional (3-D)
linguistic space of (2) in such a way that at least one of

or is greater
than 0.5. This heuristic ensures that each pattern point belongs
positively to at least one of the linguistic setslow, medium,or
high along each feature axis.

B. Output Representation

Consider an -class problem domain such that we have
nodes in the output layer. The desired output of
the th output node for theth input pattern, is defined as [14]

(3)

where is the membership value of theth pattern in
class is the weighted distance of the training pattern

from and the positive constants and are the
denominational and exponential fuzzy generators controlling
the amount of fuzziness in this class-membership set. They
influence the amount of overlapping among the output classes.
Note that, here we have used a (nonlinguistic) definition of the
output nodes which indicates the degree of belongingness of
a pattern to a class. However, this definition may be suit-
ably modified in other application areas to include linguistic
definitions.

III. K NOWLEDGE-BASED CLASSIFICATION

In this section, we formulate a methodology for encoding
a priori initial knowledge in the fuzzy MLP. Our concept is
based on the fact that if a classifier is initially provided with
some knowledge from the data set, the resulting searching
space is reduced thereby leading to a more efficient learning.
The architecture of the network may become simpler due to
the inherent reduction of the redundancy among the connection
weights. The network topology is then refined using the train-
ing data. Scope for growing hidden nodes and pruning links,
when necessary (as determined by the network performance),
enables the generation of a near optimal network architecture
with improved classification performance.

A. Knowledge Encoding

Let an interval denote the range of feature
covered by class . Then we denote the membership value
of the interval as (between and
and compute it as [13]

between and

greater than less than (4)

where

greater than if

otherwise (5)

and

less than if

otherwise (6)

Here denotes and for each of the correspond-
ing three overlapping fuzzy setslow, medium,andhigh as in
[10]. The output membership for the corresponding class
is found using (3). Note that, for the computation of [14]
of (3), is replaced by the mean of the interval
of the th feature.

We have also considered the intervals in which a class is
not included. The complement of the interval of the
feature is the region where the class does not lie and is
defined as (where denotes the complement of).
The linguistic membership values for is denoted by

(not between and and is calculated
as

not between and

less than greater than (7)

since not between and less than OR greater
than .

Let the linguistic membership values for class
in the interval as calculated by (4)–(6), be

. Similarly
for the complement of the interval, using (7), we have

A fuzzy MLP with only one hidden layer is considered,
taking two hidden nodes corresponding to and its
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complement, respectively. Links are introduced between the
input nodes and the corresponding nodes in the hidden layer

iff or

where . The weight between the
node of the hidden layer (the hidden node correspond-

ing to the interval for class ) and
first second third th node of the input layer

corresponding to feature is set by

(8)

where is the a priori probability of class and is
a small random number. This hidden node is designated as
positivenode. A second hidden node is considered for the
complement case and is termed anegativenode. Its connection
weights are initialized as

(9)

Note that the small random numberis considered to destroy
any symmetry among the weights. Thus for an-class problem
domain we have 2l nodes in the first hidden layer. In our
algorithm we have considered the following two cases.

• All connections between these 2l hidden nodes and all
nodes in the input layer are possible. The other weights
are initially set as small random numbers.

• Only those selectedconnection weights initialized by
(4)–(9) are allowed.

It is to be mentioned that the method described above
can suitably handle convex pattern classes only. In case of
concave classes we consider multiple intervals for a feature

corresponding to the various convex partitions that may be
generated to approximate the given concave decision region.
This also holds for the complement of the region in in
which a particular class is not included. Hence, in such
cases we introduce hidden nodes,positive and negative, for
each of the intervals with connections being established by (8)
and (9) for the cases of a class belonging and not belonging
to a region, respectively, such that we get multiple hidden
nodes for each of the two cases. In this connection it is to
be noted that a concave class may also be subdivided into
several convex regions as in [15].

Let there be hidden nodes, where
and , generated for class

such that and . Now connections are
established betweenth output node (for class ) and only
the corresponding hidden nodes. We assume that
if any feature value (for class ) is outside some interval,
the total input received by the corresponding hidden node
is zero and this thereby produces an output due to
the sigmoid nonlinearity of (1).

The connection weight between the th output node
and the th hidden node is calculated from a series of
equations generated as below. For an intervalas input for
class , the expression for output of the th output node

Fig. 1. An example to demonstrate knowledge encoding.

is given by

(10)

where is the sigmoid function as in (1) and the hidden
nodes correspond to the intervals not represented by the
convex partition . Thus for a particular class we have as
many equations as the number of intervals (includingnot) used
for approximating any concave and/or convex decision region

. Thereby, we can uniquely compute each of the connection
weights (corresponding to each hidden node and
class pair).

The network architecture, so encoded, is then refined by
training it on the pattern set supplied as input. In case of
“all connections” between input and hidden layers, all the link
weights are trained. In case of “selected connections” only the
selected link weights are trained, while the other connections
are kept clamped at zero. If the network achieves satisfactory
performance, the classifier design is complete. Otherwise, we
resort to node growing or link pruning.

B. An Example

Consider the network depicted in Fig. 1. Let the output node
corresponding to a class be connected to two hidden

nodes and via connection weights and .
Let class lie in the interval of input feature .
Then the weights between the input and the hidden layer are
initially set from (8) and (9) as

and

In the case of the network withall connectionsthe other
weights between the input and the hidden layers (e.g.,

) are initialized by small random
values. On the other hand, in the case of the network with
selected connections, these are not considered at all.
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Substituting (10) in (1), we have

(11)

where is the output of the th output node and is that
of the hidden node, corresponding to the presented interval,
connected to the th output node. From (11) we have

(12)

Similarly, considering the complement-interval of
the feature , we can write

(13)

Therefore

(14)

The outputs and are calculated using (1) with
appropriate input values. Then from (12) and (14) we can
evaluate and .

C. Pruning

A large number of connection weights in a network often
results in redundancy, leading to the problem of just mem-
orizing the patterns. In such cases pruning of less important
links and/or hidden nodes is incorporated in order to get a
near optimal network architecture and thereby enhance the
generalization capability. There exists various algorithms for
pruning [16], [17] ANN’s. Here we have incorporated link
pruning of the knowledge-based network in a slightly different
way.

A connection weight is pruned if its contribution toward
the network output is least significant during the presentation
of the training set. Therefore, the link in layer is
pruned if

(15)

where the summation is taken over all the patternsin the
training set and theminimum is computed over the indices

.
When a network with large number of connection weights

results in poor classification performance after a certain num-
ber of epochs, links between layers and , for each

, need to be selected for pruning by (15). The resulting
network is retrained for a few more epochs and this process
is continued till we get a satisfactory recognition score.

Note that, we do not resort to node pruning as the number of
hidden nodes are initially encoded with the domain knowledge
and are, therefore, not redundant. During refinement by train-
ing, it is the growth of extra links that leads to redundancy.
Hence it is our objective to prune a few such redundant links
to improve the generalization capability of the network.

D. Growing of Hidden Nodes

If after a certain number of epochs (experimentally deter-
mined) the classifier still does not recognize a certain class

well and the network size is not too large, we resort to
adding a hidden node (instead of pruning) to our knowledge-
based model. Connection weights are established between this
new node and all the classes. Links are also introduced from
all input nodes to this newly added node. Now training is
allowed on these new connection weights for a few epochs
(again empirically set) using only those samples which are
in class while keeping all the other links frozen. Then
all the links are retrained with the entire training set and the
process of adding, freezing, and retraining are continued, until
all the classes are reasonably well recognized. Note that, other
approaches for growing of nodes in ANN’s may be found in
[18] and [19].

IV. RULE GENERATION

The trained knowledge-based network is used for rule
generation inif–then form in order to justify any decision
reached. These rules describe the extent to which a test pattern
belongs or does not belong to one of the classes in terms of
antecedent and consequent clauses provided in natural form.
We use two rule-generation strategies as described below. The
algorithms are, however, different from that reported in [11].

Method (i) Treating the network as a black-box and us-
ing the training set input (in numeric and/or
linguistic forms) and network output (with con-
fidence factor) to generate the antecedent and
consequent parts.

Method (ii) Backtracking along maximal weighted paths
using the trained net and utilizing its input
and output activations (with confidence factor)
for obtaining the antecedent and consequent
clauses.

A. Using Numeric and/or Linguistic Inputs—Method (i)

In this method we use an exhaustive set of numeric and/or
linguistic inputs along with their hedges at the input for
antecedent clauses (if parts). We have a total of patterns
(corresponding tovery, mol, and not for each of linguistic
valueslow, medium,andhighof each of the features) for a data
set with features. These patterns constitute the antecedent
part of the rules. In the case of numeric patterns, the distance
between the th pattern and each of the linguistic pattern
vectors are calculated. The linguistic pattern closest to theth
pattern determines the antecedent part of the rule [11].

To generate the consequent part of the rule, we use a
measure which reflects the amount of difficulty in arriving
at a decision by minimizing the ambiguity in the computed
output vector. Aconfidence factor(CF) is defined [13] as

CF

CF (16)
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where is the th component in
the output vector [by (1)], and indicates the number
of occurrences of in . Note that CF takes care of the
fact that the difficulty in assigning a particular pattern class
depends not only on the highest entry in the output vector

but also on its differences from the other entries .
It is seen that the higher the value of CF, the lower is the
difficulty in deciding a class and hence greater is the degree
of certainty of the output decision. Based on the value of CF,
the system makes the following decisions while generating the
consequent clause (thenpart) of the rule. Let such
that the pattern under consideration belongs to class. We
have

1) if CF then very likely class and
there is no second choice;

2) if CF then likely class and there is
second choice;

3) if CF then mol likely class and there
is second choice;

4) if CF then not unlikely class and
there is no second choice;

5) if CF then unable to recognize class and
there is no second choice.

To obtain a second choice corresponding to a pattern class
(say), we find theconfidence factorCF for the second

highest entry in the output vector using (16). There may
be some cases where there are multiple entries with the highest
value in the output vector. In that case, there will not
be a second choice of pattern class. Instead, the form of the
consequent will be “likely class or ” where the output
values corresponding to classes and both have the
highest value .

Identical rules, if any, are discarded from the generated rule
set.

B. Backtracking Along Trained Connection
Weights—Method (ii)

An input pattern from the training set is presented to
the input of the trained network and its output computed. The
consequent part of the correspondingif–thenrule is generated
by (16) as described in Section IV-A. To find the antecedent
clauses of the rule, we backtrack from the output layer to the
input through the maximal weighted links. The path from node

in the output layer to node in the input layer through node
in the hidden layer is maximal if

(17)

provided that and the maximum is
computed over the index . Here the path length from node

in the output layer to node in the hidden layer is

and not as defined by Mitra and Pal [11] in an earlier
approach. Besides, the CF of (16) is also different and in
certain ways better than thebelief used there. We consider
only one node corresponding to the three linguistic values

of each feature so that

(18)

where and correspond to low , medium or high
. The 3-D linguistic pattern vectorlow, mediumor high

with or without hedges [corresponding to the linguistic feature
computed by (18)], which is closest to the relevant 3-D

part of pattern , is selected as the antecedent clause [11].
This is done for all input features to which a path may be found
by (17). The completeif part of the rule is found by ANDing
the clauses corresponding to each of the features, e.g.,

If is mol and is not and

and is very

1) Negative Rules:It may sometimes happen that we are
unable to classify a test pattern directly with the help of the
positiverules (concerning its belongingness to a class) derived
by any of the above two methods. In such cases, we proceed
by discarding some classes which are unlikely to contain the
pattern, and thereby arrive at the class(es) to which the pattern
possibly belongs. In other words, in the absence of positive
information regarding the belongingness of patternto class

, we use the complementary information about the pattern
not belonging to class . To handle such situations, we

have generatednegativerules with the consequent part of the
form not in class by backtracking from the output layer
through the trained connection weights. Note that, forpositive
rules we traverse the hidden node while for negativerules
we backtrack along the hidden node .

Let an input pattern from the training set be presented
to the input layer of the trained network such that the output
of the node in the output layer corresponding to the class

is minimum, i.e., . Therefore, we are
certain that the pattern is (possibly) not included in the class

. Hence, the consequent part of the corresponding rule
becomesnot in class . The antecedent part of the rule is
obtained by backtracking from the output nodethrough the
maximal path using (17) with the restrictions that now we
consider the absolute values of the individual product terms.
The corresponding rule, so obtained, is of the form

If is mol and and is very

then the pattern is not in class

Note that the approach in [11] did not consider such negative
rules.

It is worth mentioning that the above rule generation tech-
niques can also handle the situations where the input is given
in set form. In other words, the feature information of
a test pattern is neither linguistic nor numeric, but may be
available as 1) some lower bound; 2)
some upper bound; or 3) in some interval such that

lies between and . In these cases, the linguistic
valueslow, medium, highcorresponding to the input given in
the set form and hedges are evaluated from (4)–(6). Then the
rule with this antecedent is picked up, and we take a decision
on the basis of the corresponding consequent part regarding
its class (as explained earlier).
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Fig. 2. An example to demonstratepositive and negativerule generation
using method (ii).

2) An example:Consider a knowledge-based network
(Model AN) given in Fig. 2 demonstrating the rule generation
technique using method (ii). We have considered the feature

for the antecedent clause. Only the classesand with
maximum and minimum outputs, respectively (on presenting
a pattern at the input layer), have been considered for the
generation ofpositive and negativerules. The hidden nodes
1 and 2 correspond to two convex segments of the region
represented by the class , and 3 corresponds to the region
complement to class . Similarly, for the class , we have
considered the hidden node 4 corresponding to the region of
the class , and 5 and 6 correspond to the region other than
class . Thus, nodes 1 and 2, and 4 represent thepositive
nodes for classes and , respectively. Similarly, the
nodes 3, 5, and 6 denote thenegativenodes for classes
and , respectively.

A pattern with linguistic values low medium
and high of feature is presented to the

input layer of the network. Assume that the activations of the
output nodes corresponding to the classesand are 0.9
and 0.1, respectively. Therefore, backtracking starts from the
output node corresponding to the class and searches for
the maximal path through the hidden nodes 1 and 2 only (if
the activations of these nodes are at least 0.5) forpositiverule
generation. For thenegativerule generation, it starts from the
output node corresponding to the class and searches for
the maximal path through the hidden nodes 5 and 6 only (if the
outputs of these nodes are at least 0.5). The links with weights
as shown in the figure are obtained during training. For clarity
of the figure, we have not considered the links from hidden
node 3 to and corresponding to the feature as we
do not require these links for the generation ofpositiverule.
Similarly, the links from the hidden node 4 to the input nodes

and are not shown.
We denote the path length [as explained by (17)] from

the hidden node to the input node by path , and that

from the output node to the hidden node by path .

Fig. 3. Pattern setPat1.

The path length from the output node to the input node
via hidden node is denoted by path . Therefore, from

Fig. 2 we find the following path lengths: path
path path and

path . Note that, path and path have not been
considered as the activation of the input nodeis less than
0.5. The total inputs received by the hidden nodes 1 and 2
are found to be 1.08 and 1.0, respectively. Therefore, the
activations of these nodes are and ,
respectively by (1). The path lengths between the nodes in
the output layer and the hidden layer are path and
path . The total path lengths are found to be path

path path path .
Hence, the maximal path from the output node corresponding
to the class is obtained as the path via the hidden node
1 to the input node (the selected path consists of the
links joining the nodes indicated by solid circles in Fig. 2).
The antecedent clause corresponding to the featureis
“ is mol medium,” and is obtained by finding the closest
match of the 3-D vector corresponding to the feature, to
the respective linguistic pattern (with/without hedges). The
consequent part of the rule isvery likely class , as obtained
from (16).

For the generation ofnegativerule, we compute the follow-
ing path lengths: path path path

path The total inputs received by the hidden
nodes 5 and 6 are 0.79 and 0.81, respectively. Therefore, the
corresponding activations are and
Thus, the path lengths between the nodes in the output layer
and the hidden layer are path and path .
The total path lengths are path path

path path Hence, the maxi-
mal path from the output node corresponding to the class
is obtained as the path via the hidden node 6 to the input
node (the path consisting of the links joining the nodes
indicated by circles with dots inside in Fig. 2). Therefore,
the corresponding antecedent clause, “is mol low,” of the
negative rule is obtained as in the earlier case. Thus, the
negativerule is: If is mol low then the pattern is not in
class .
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Fig. 4. Vowel data.

V. EXPERIMENTAL RESULTS

In this section we compare the classification and rule gen-
eration performance of the proposed knowledge-based model
with that of the conventional and fuzzy versions of the
MLP [10], [11], and the fuzzy min–max neural network [12]
both on synthetic and real-life (speech and medical) data.
In all the cases the data sets have been divided into two
subsets—training andtesting. The synthetic dataPat1 (Fig. 3)
contains two input features, two pattern classes, and consists
of 557 pattern points. As the class structures are concave, we
have found approximately (by inspecting the feature space)
the set of intervals of the features where each of the pattern
classes lie (or do not lie). The networks are trained with 10%
of the original data while the remaining 90% data constitutes
the test set.

The speech dataVowel deals with 871 Indian Telugu vowel
sounds. These were uttered in a consonant-vowel-consonant
context by three male speakers in the age group of 30 to
35 years. The data consists of three features: and
corresponding to the first, second, and third vowel formant
frequencies obtained through spectrum analysis of the speech
data. Fig. 4 provides the plot in the plane for ease of
depiction. The data contains six vowel classes—a, i, u, e, o
represented as 1, 2, 3, 4, 5, and 6 in the sequel. Thetraining
set contains 10% of the original data set.

The medical dataHepato, consisting of nine input features
and four pattern classes, deals with variousHepatobiliary
disorders[20] of 536 patient cases. The input features are the
results of different biochemical tests,viz., glutamic oxalacetic
transaminate (GOT, Karmen unit), glutamic pyruvic transam-
inase (GPT, Karmen unit), lactate dehydrase (LDH, iu/l),
gamma glutamyl transpeptidase (GGT, mu/ml), blood urea
nitrogen (BUN, mg/dl), mean corpuscular volume of red blood
cell (MCV, fl), mean corpuscular hemoglobin (MCH, pg), total
bilirubin (TBil, mg/dl) and creatinine (CRTNN, mg/dl). The

hepatobiliary disorders alcoholic liver damage (ALD), primary
hepatoma (PH), liver cirrhosis (LC) and cholelithiasis (C),
constitute the four output classes. In this case, 30% of the
original data set comprises thetraining set while the remaining
70% data forms thetest set. In the case of the medical data
we have assumed the pattern classes to be convex as it is
otherwise very difficult to visualize the exact nature of the
nine-dimensional feature space.

It is found that the knowledge-based model converges to
a good solution with a very small number of training epochs
(iterations) in all the four cases. Note that, we have used the
following four knowledge-based models designated as follows:

all connections with not Model AN

all connections without not Model A

selected connections with notModel SN

selected connections without notModel S

Results are compared with those of the fuzzy MLP (Model
F), the conventional MLP (Model C), and the fuzzy min–max
network (Model FMM) [12]. The number of links required in
each case is appropriately indicated (in parenthesis after the
name of the corresponding model) in the tables. The variables

and of (3) were set at 5.0 and 1.0, respectively [10],
for the speech and medical data. For the synthetic data we use

and hence and are not required.

A. Classification

Table I depicts the result obtained withPat1 data. A total
of six intervals (i.e., six hidden nodes) for the two features
are found to be sufficient to characterize the classes if we do
not consider the intervals in which any of the classes isnot
included[(4)–(6) only]. This is termed as thewithout notcase.
Otherwise, if we consider both the intervals of the features in
which a classis includedand is not included, we require a
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TABLE I
PERFORMANCE OFDIFFERENT MODELS ON Pat1 DATA

total of ten intervals (i.e., ten hidden nodes). This is called the
with notcase. It is observed that models A and SN give 100%
recognition score in just 600 epochs. The other models (AN
and S) have not been able to recognize class 2 at this stage.
In model AN, perhaps the large number of interconnections
encode too much redundant information thereby not enabling
the classifier to recognize class 2. On the other hand, model S
provides poor result probably due to under-information. The
performance of C and F is the same as that of AN and S.
That is why we have not included the results for C and F in
Table I.

We have resorted to pruning of links in models AN, F and
growing of hidden nodes in cases of models S, F, C. It is
found that after only 100 epochs of growing the model SN
provides overall recognition score of 100% on the training set
and 99.8% on the test set. This demonstrates a remarkable
improvement in performance. Hidden nodes were also added
to models C and F at the same stage but the performance is
found to be poor (0% recognition for class 2) in case ofPat1
data. Pruning model AN resulted in 100% recognition scores
for both the training and test sets. The links were pruned from
600 epochs at intervals of ten epochs, up to 750 epochs, and
then the network was trained until 900 epochs. Although model
F could now recognize around 20% patterns from class 2, this
was considerably less than that by model AN.

Table II shows the results obtained withVowel data. Since
all the classes in the feature space are convex, we use two
hidden nodes for each of the classes. Hence onlywith not
models have been considered and we require a total of 12
hidden nodes for this data set. The results demonstrate that
model AN gives acceptably good performance in just 200
epochs whereas model SN cannot do the same due to under-
information. Note that, the vowel classes are overlapping

TABLE II
PERFORMANCE OFDIFFERENT MODELS ON Vowel DATA

and fuzzy, thereby generating fuzzy output class membership
values that require storage of more information than in case
of crisp class membership values. Perhaps this accounts for
the better performance of model AN (with more connections).
Models C and F were unable to recognize classes 1, 2, and 4,
and fared the worst (overall recognition score during training
and testing being 42.35 and 39.19% for the model C, and
55.29 and 52.93% for the model F). As before, their details
are not mentioned in the table to restrict the size of the
article.

As model AN performed reasonably well for all classes
initially (before growing), the incorporation of additional hid-
den nodes did not improve the results in this case. However,
when model SN was augmented for class 1 it was found that
after 350 epochs the model could recognize 14.29% of class 1
during training and 1.54% during testing. The overall scores
rose to 83.53 and 74.17% for the training and testing sets,
respectively. The results are depicted in Table III.

Table IV demonstrates the classification performance for the
medical dataHepatowhere classes 1, 2, 3, and 4 correspond to
the four disease classes and respectively.
Note that here we do not knowa priori the shape of the
pattern classes in the nine-dimensional feature space. We have
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TABLE III
EFFECT OF ADDING HIDDEN NODE ON THE PERFORMANCE OF

THE VARIOUS KNOWLEDGE-BASED MODELS ON Vowel DATA

assumed that the classes are convex, so that only eight hidden
nodes are used corresponding to the four classes. As in the
case ofVowel, only the knowledge-based modelsAN andSN
have been used. Since we have approximated the structures of
the classes as convex, model SN which uses only those links
that are encoded with the initial knowledge performs rather
poorly. Perhaps it would require more nodes and links than
were available under our assumption. However, model AN,
which is allowed to grow extra links, is found to have solved
this problem. Its performance is considerably better than that
of models SN and F in just 500 epochs (Table IV). Note that,
the model C, being unable to recognize classes 1, 3, and 4 is
not included in the table.

Tables I, II, and IV also show the classification performance
of the fuzzy min-max neural network (model FMM) [12] on
the three data sets. In this model, the number of links can be
varied by altering some of the parameters. Here we show the
results for two different configurationsviz., 1) providing mol
the same overall recognition score (on the training sets) as
the proposed model and 2) providing mol the same number
of links as the proposed model. Note that, the model A for
Pat1 (Table I), and model AN for bothVowel (Table II) and
Hepato (Table IV) have been compared for this purpose, as
they perform the best. It is clear that the model FMM requires
more links than the proposed model to get mol the same
overall recognition score. Similarly, with mol the same number
of links the model FMM performs poorer for all the data
sets.

Figs. 5 and 6 depict the variation ofmean square error
with the number of sweeps for pattern setsPat1 and Vowel,
respectively. In the case ofPat1 we demonstrate the behavior
of the two better knowledge-based models A and SN only,
for ease of explanation. It is observed that model C has the
worst performance. Model A (forPat1) and model AN (for
Vowel) behave the best. It is found that Model SN is better than
Model F in the beginning and converges to a good solution
very fast (in about 600 sweeps in Fig. 5) forPat1 while Model

TABLE IV
PERFORMANCE OFDIFFERENT MODELS ON Hepato DATA

F requires about twice to thrice this time to reach the same
level of performance. In contrast, forVowel data, Model F
surpasses model SN at around 500 sweeps (as seen from
Fig. 6). However, Model AN/A is always the best perhaps
due to the presence of less redundancy (than Model F) along
with more knowledge (than Model SN). Note that, Tables I
and II depict the performance of the knowledge-based models
at 600 sweeps (epochs), respectively. This accounts for the
relatively poor performance of Model F at this stage, whereas
it fares better with longer training time (as is evident from
the figures).

B. Rule Generation

Tables V and VI compare the rules generated forPat1
and Vowel data, respectively, by the methods described in
Section IV using the proposed knowledge encoded networks
and the fuzzy MLP [10]. The rules generated on the various
models are not identical due to the different amounts of
redundancy inherent in them and the difference in the encoding
of their network architectures. Method (ii) often produces
different results (as compared to method (i) where only the
input and output of the neural net are considered) because here
the trained connection weight magnitudes are utilized during
the tracing of the maximal weighted paths, thereby using the
encoded and refined domain knowledge along with the test
case feature values.
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Fig. 5. Variation of mean square errorwith number of sweepsfor Pat1.

Fig. 6. Variation of mean square errorwith number of sweepsfor Vowel.

1) Negative Rules:Let us consider the trained connection
weights of the knowledge-based network in the case
of Pat1 to explain the generation ofnegative rules. It is
interesting to note that the weights connecting
nodes in the hidden layer with the correspondingth output
node are found to be negative, whereas those connecting
nodes are positive for each of the classes. Therefore,
when a pattern belonging to class is presented to the

input layer of the network, the output produced by the
hidden nodes is greater than those by hidden nodes
(or sometimes comparable in magnitude when the weights

and are also comparable). But in such cases,
the output produced by the nodes is always found to
be greater than those by nodes. The hidden nodes 1,
2, 3, and 4 correspond to the intervals to which class 1
belongs, while node 5 refers to the interval in which class
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TABLE V
RULES OBTAINED BY DIFFERENT MODELS FOR Pat1

1 does not lie. The corresponding connection weights are
8.241 502, 13.473 857, 13.286 455, 8.405 158, 16.488 053, and
16.458 573, respectively. Similarly, hidden nodes 6 and 7
correspond to the intervals to which class 2 belongs, while
the hidden nodes 8, 9, and 10 are indicative of the region
where class 2 is not included. Their connection weights
are 43.487 919, 9.280 226, 14.061 259, and 9.116 443,
respectively. Considering this, we backtrack along nodes
while determining a rule about a pattern not belonging to class

and generate that path having the maximal value for the
magnitude of the product term (as explained in Section IV-B.
for negativerules).

Two samplenegativerules obtained by method (ii) using
the AN and F models forVowel data are provided below.

Using model AN:
If is mol low and is medium and is very low then

the pattern is not in class 4.
If is very high and is mol medium and is very

medium then the pattern is not in class 3;
Using model F:
If is high and is medium and is high then the

pattern is not in class 4.
If is very high and is mol medium and is very

medium then the pattern is not in class 3.
It is seen thatnegative rules offer an useful solution in

cases where no suitablepositive rule can be found. Note
that, model F does not have or nodes encoded in
its structure. We have provided the negative rules in this
case by just backtracking along the maximal magnitude paths
from the class producing the minimal output. The rules for
model are provided as an extension to the approach of
[11] while also enabling us to make a comparative study.
Similarly, a samplenegativerule generated by method (ii)
with the AN and F models for the medical dataHepato is
provided below.

Using model AN:
If is low and is low and is very medium and is

low and is low and is medium and is mol medium
and is low and is very medium then the pattern is not
in class 1.

Using model F:
If is low and is low and is very medium and

is low and is mol medium and is medium and is
mol medium and is mol low and is very medium then
the pattern is not in class 1.

VI. CONCLUSIONS AND DISCUSSION

A new methodology of knowledge encoding among the
connection weights of a fuzzy MLP [10] is described. This
enables the network to perform classification and rule gener-
ation more efficiently. It involves development of a technique
for generating an appropriate architecture of the fuzzy MLP
[10] in terms of hidden nodes and links. Node growing and
link pruning are used to enhance performance. It is found that
the knowledge-based classification leads to better result than
those of the conventional and fuzzy versions of the MLP [10],
[11], and the fuzzy min-max neural network [12].

During learning an MLP searches for the set of weights
that corresponds to some local minima. There may be a large
number of such minimum values corresponding to various
good solutions. The knowledge-based network initially con-
siders these weights so as to be near one suchgoodsolution.
As a result, the searching space gets reduced and learning
becomes faster. Note that, unlike the other methods [1], [2], the
proposed knowledge encoding technique involves nonbinary
weighting mechanism based on the domain knowledge of a
data set. The incorporation of fuzziness at various levels also
helps the model to efficiently handle uncertain and ambiguous
information both at the input and the output.

Conventional and fuzzy versions of the MLP consider
empirically determined fixed architecture, whereas the
knowledge-based model automatically determines it. The
fuzzy min–max network [12] generates hidden nodes from
some empirically determined parameter values. It is observed
that this network requires larger number of links than
the proposed model to generate mol the same recognition
score.

Our model is capable of generating bothpositiveandneg-
ative rules in linguistic form to justify any decision reached.
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TABLE VI
RULES OBTAINED BY THE KNOWLEDGE-BASED AND FUZZY MLP FOR Vowel

These rules are found to be useful for inferencing in ambiguous
cases. Note that, the rule generation algorithms described in
this article are different from that derived from fuzzy MLP
in [11]. A comparative study with that algorithm has also
been provided to support this. It is observed that the less
redundant knowledge-based model yields better rules much
earlier. The concept of negative rules has been introduced
to handle situations where a pattern does not belong to a
specific class with high certainty. In such ambiguous sit-
uations, the complementary case of a pattern certainly not
belonging to a class is considered to provide an appropriate
explanation.
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