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Rough Fuzzy MLP: Knowledge
Encoding and Classification
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Abstract—A new scheme of knowledge encoding in a fuzzy
multilayer perceptron (MLP) using rough set-theoretic concepts
is described. Crude domain knowledge is extracted from the data
set in the form of rules. The syntax of these rules automatically
determines the appropriate number of hidden nodes while the
dependency factors are used in the initial weight encoding. The
network is then refined during training. Results on classification
of speech and synthetic data demonstrate the superiority of the
system over the fuzzy and conventional versions of the MLP
(involving no initial knowledge).

Index Terms—Fuzzy MLP, knowledge-based networks, net-
work design, pattern recognition, rough sets, rule generation, soft
computing, speech recognition.

I. INTRODUCTION

T HERE has recently been a spurt of activity to integrate
different computing paradigms such as fuzzy set theory,

neural networks, genetic algorithms, and rough set theory, for
generating more efficient hybrid systems that can be classified
as soft computingmethodologies [1], [2]. The purpose is
to provide flexible information processing systems that can
exploit the tolerance for imprecision, uncertainty, approximate
reasoning, and partial truth in order to achieve tractability,
robustness, and low cost in real-life ambiguous situations [3].

Neuro-fuzzy computing [4], [5] capturing the merits of
fuzzy set theory [6] and artificial neural networks (ANN’s) [7],
constitutes one of the best-known hybridizations encompassed
in soft computing. This integration promises to provide, to a
great extent, more intelligent systems (in terms of parallelism,
fault tolerance, adaptivity, and uncertainty management) to
handle real-life recognition/decision making problems. The
fuzzy multilayer perceptron (MLP) [8], [9] is such an example
which incorporates fuzzy set-theoretic concepts at the input
and output levels and during learning. It is found to be more
efficient than the conventional MLP for classification and rule
generation.
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Generally, ANN’s consider a fixed topology of neurons
connected by links in a predefined manner. These connec-
tion weights are usually initialized by small random values.
Knowledge-based networks [10], [11] constitute a special class
of ANN’s that consider crude domain knowledge to generate
the initial network architecture which is later refined in the
presence of training data. This process helps in reducing the
searching space and time while the network traces the optimal
solution. Node growing and link pruning are also made in order
to generate the optimal network architecture. In this paper, we
demonstrate how the theory of rough sets can be utilized for
extracting domain knowledge.

The theory of rough sets [12] has recently emerged as an-
other major mathematical approach for managing uncertainty
that arises from inexact, noisy, or incomplete information. It
has been investigated in the context of expert systems, decision
support systems, machine learning, inductive learning and
various other areas of application. It is found to be particularly
effective in the area of knowledge reduction. The focus of
rough set theory is on the ambiguity caused by limited dis-
cernibility of objects in the domain of discourse. The intention
is to approximate arough (imprecise) concept in the domain
of discourse by a pair ofexactconcepts, called the lower and
upper approximations. These exact concepts are determined
by an indiscernibility relation on the domain, which, in turn,
may be induced by a given set ofattributes ascribed to the
objects of the domain. These approximations are used to define
the notions ofdiscernibility matrices, discernibility functions
[13], reducts, anddependency factors[12], all of which play
a fundamental role in the reduction of knowledge.

Many have looked into the implementation of decision
rules extracted from operation data using rough set formalism,
especially in problems of machine learning from examples
and control theory [14]. In the context of neural networks, an
attempt of such implementation has been made by Yasdi [15].
The intention was to use rough sets as a tool for structuring
the neural networks. The methodology consisted of generating
rules from training examples by rough-set learning, and map-
ping the dependency factors of the rules into the connection
weights of a four-layered neural network. Application of rough
sets in neurocomputing has also been made in [16]. However,
in this method, rough sets were used for knowledge discovery
at the level of data acquisition, (viz., in preprocessing of the
feature vectors), and not for structuring the network.

In this article, we have attempted to integrate rough sets and
fuzzy neural network for designing a knowledge-based system.
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Fig. 1. Three-layered MLP.

Rough set-theoretic techniques are utilized for extracting crude
domain knowledge, that is then encoded among the connection
weights. Methods are derived to model 1) convex decision
regions with single object representatives and 2) arbitrary
decision regions with multiple object representatives. A three-
layered fuzzy MLP [8] is considered. The input is modeled
in terms of the 3-dimensional linguistic feature space while
the output consists of class membership values. The feature
space gives us the condition attributes and the output classes
the decision attributes, so as to result in a decision table. This
table, however, may be transformed, keeping the complexity
of the network to be constructed in mind. Rules are then
generated from the (transformed) table by computing relative
reducts. The dependency factors of these rules are encoded as
the initial connection weights of the fuzzy MLP. The network
is next trained to refine its weight values.

The knowledge encoding procedure, unlike most other
methods [10], [11], involves a nonbinary weighting mecha-
nism based on a detailed and systematic estimation of the
available domain information. It may be noted that the appro-
priate number of hidden nodes is automatically determined.
The classification performance is found to be better than the
conventional and fuzzy versions of the MLP. The model is
capable of handling input in numerical, linguistic and set
forms, and can tackle uncertainty due to overlapping classes.

A brief description of the fuzzy MLP used is provided
in Section II. The basics of rough set theory are presented
in Section III. In Section IV, we describe the knowledge
encoding methodology. The model is implemented on real-
life speech data as well as synthetic data (in Section V)
for classification. Comparison is provided with the standard
Bayes’ classifier, -nearest neighbors (-NN) classifier, clas-
sification and regression tree [17], and the conventional and
fuzzy versions of the MLP (involving no initial knowledge).
The paper is concluded in Section VI.

II. FUZZY MLP MODEL

In this section we describe, in brief, the fuzzy MLP [8]
which is used for designing the knowledge-based network.
Consider the layered network given in Fig. 1. The output of

a neuron in any layer other than the input layer
is given as

(1)

where is the state of theth neuron in the preceding
th layer and is the weight of the connection

from the th neuron in layer to the th neuron in
layer . For nodes in the input layer, corresponds to

the th component of the input vector. Note that

, as depicted in Fig. 1. The mean square
error in output vectors is minimized by the backpropagation
algorithm using a gradient descent with a gradual decrease of
the gain factor.

A. Input Vector

An -dimensional pattern is
represented as a 3-dimensional vector [18]

(2)

where the values indicate the membership functions of the
corresponding linguistic -setslow, medium, and high along
each feature axis and refer to the activations of
the 3 neurons in the input layer. The three overlapping-sets
along a feature axis are depicted in Fig. 2.

When the input feature is numerical, we use the-fuzzy sets
(in the one-dimensional form), with range [0, 1], represented as

for

for

otherwise

(3)

where is the radius of the -function with as the
central point.

When the input feature is linguistic, its membership
values for the -sets low , medium , and high
are quantified as

low
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Fig. 2. Overlapping linguistic�-sets.

medium

high

where , , , , , indicate the centers and
radii of the three linguistic properties along theth axis,
and , , denote the cor-
responding feature values at which the three linguistic
properties attain membership values of 0.95.

For example, the linguistic featurelow is represented
by three components corresponding to the membership
values of the three -sets low , medium and high

(Fig. 2). means a membership of 0.95 for
. refers to the membership

attained by the -set for that which caused -
set to have a membership value of 0.95. Similarly,

refers to the membership attained
by the -set for that which caused -set to have a
membership value of 0.95.

B. Output Representation

Consider an -class problem domain such that we have
nodes in the output layer. Let the-dimensional vectors

and denote the
mean and standard deviation, respectively, of the numerical
training data for the th class . The weighted distance of
the training pattern from the th class is defined as

for (4)

where is the value of the th component of theth pattern
point.

The membership of theth pattern in class , lying in the
range [0, 1], is defined as [19]

(5)

where positive constants and are the denominational
and exponential fuzzy generators controlling the amount of
fuzziness in this class-membership set.

Then, for the th input pattern, the desired output of theth
output node is defined as

(6)

According to this definition a pattern can simultaneously
belong to more than one class, and this is determined from
the training set used during the learning phase.

III. ROUGH SET PRELIMINARIES

Let us present some requisite preliminaries of rough set
theory. For details one may refer to [12] and [13].
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An information systemis a pair , where is
a nonempty finite set called theuniverseand a nonempty
finite set of attributes. An attribute can be regarded as a
function from the domain to some value set .

An information system may be represented as anattribute-
value table, in which rows are labeled by objects of the
universe and columns by the attributes.

With every subset of attributes , one can easily
associate an equivalence relation on :

for every

Then .
If , the sets and

, where denotes the equivalence class
of the object relative to , are called the -lower and

-upper approximationof in and denoted ,
respectively.

is -exact or -definablein if .
It may be observed that is the greatest -definable set
contained in , and is the smallest -definable set
containing . Let us consider the following simple example.

Consider aninformation system , where the do-
main consists of the students of a school, and there is a
single attribute —that of “belonging to a class.” Then is
partitioned by the classes of the school.

Now take the situation when an infectious disease has spread
in the school, and the authorities take the two following steps.

1) If at least one student of a class is infected, all the
students of that class are vaccinated. Letdenote the
union of such classes.

2) If every student of a class is infected, the class is
temporarily suspended. Let denote the union of such
classes.

Then . Given this information, let the following
problem be posed:Identify the collection of infected students.

Clearly, there cannot be a unique answer. But any setthat
is given as an answer, must containandat least one student
from each class comprising .

In other words, it must have as its lower approximation
and as its upper approximation.

is then a rough concept/set in the information system
.

Further, it may be observed that any setgiven as another
answer, isroughly equal to , in the sense that both are
represented (characterized) by and .

We now define the notions relevant to knowledge reduction.
The aim is to obtain irreducible but essential parts of the
knowledge encoded by the given information system—these
would constitutereductsof the system. So one is, in effect,
looking for maximal sets of attributes taken from the initial
set ( , say), which induce thesamepartition on the domain
as . In other words, the essence of the information remains
intact, and superfluous attributes are removed. Reducts have
been nicely characterized in [13] bydiscernibility matrices
and discernibility functions.A principal task in our proposed
methods will be to compute reducts relative to a particular
kind of information system, and relativized versions of these

matrices and functions shall be the basic tools used in the
computation.

Let and in the
information system . By the discernibility matrix
[denoted ] of is meant an -matrix such that

(7)

A discernibility function is a Boolean function of
Boolean variables corresponding to the attributes

, respectively, and defined as follows:

(8)
where is the disjunction of all variables with .
It is seen in [13] that is a reduct in if and
only if is a prime implicant (constituent of the
disjunctive normal form) of .

The next concept that we shall require during rule gener-
ation, is that ofdependency factor.It may well happen for

, that dependson , i.e., —so that
information due to the attributes in is derivable from that
due to the attributes in . This dependency can be partial, in
which case one introduces a dependency factor,

card POS
card

(9)

where POS , and card denotes cardinality
of the set.

We are concerned with a specific type of information system
, called adecision table.The attributes in such

a system are distinguished into two parts,viz. conditionand
decisionattributes. Classification of the domain due to decision
attributes could be thought of as that given by an expert. One
may now want to deal withconsistentdecision tables, such that
a decision attribute does not assign more than one value to an
object, or for that matter, to objects indiscernible from each
other with respect to the given (condition) attributes. Formally
we have the following.

Let be the sets of condition and decision
attributes of , respectively. Therank of a decision attribute

, is the cardinality of the image of the
function on the value set . One can then assume that

.
The generalized decisionin corresponding to is then

defined as a function such that
and , denoting

the power set. A decision table with is called
consistent (deterministic)if card for any ,
or equivalently, if and only if POS . Otherwise, is
inconsistent (nondeterministic).

Knowledge reduction now consists of eliminating super-
fluous values of the condition attributes by computing their
reducts, and we come to the notion of arelative reduct.

An attribute is -dispensable in , if
POS POS ; otherwise is -indispensable
in . If every attribute from is -indispensable in , is

-independent in . A subset of is a -reduct in if
is -independent in and POS POS .
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Relative reducts can be computed by using a-
discernibility matrix. If , it is an

matrix [denoted ], the th component of
which has the form

and (10)

for .
The relative discernibility function is constructed from

the -discernibility matrix in an analogous way as from
the discernibility matrix of [cf. (7) and (8)]. It is once more
observed that [13] is a -reduct in if and only
if is a prime implicant of .

IV. NETWORK CONFIGURATION USING ROUGH SETS

Here we formulate two methods for rule generation and
knowledge encoding for configuring a network. Method I
works on the assumption that each object of the domain of
discourse corresponds to a single decision attribute. On the
other hand, Method II is able to deal with multiple objects
corresponding to one decision attribute. From the perspective
of pattern recognition, this implies using a single prototype to
model a (convex) decision region in case of Method I. For
Method II, this means using multiple prototypes to serve as
representatives of any arbitrary decision region.

The crude domain knowledge, so extracted, is encoded
among the connection weights, leading to the design of a
knowledge-based network. Such a network is found to be
more efficient than the conventional versions for the following
reason. During learning an MLP searches for the set of
connection weights that corresponds to some local minima. In
other words, it searches for that set of weights that minimizes
the difference between the target vector and the actual output
(obtained by the MLP). Note that there may be a large
number of such minimum values corresponding to various
goodsolutions. If we initially set these weights so as to be near
one suchgood solution, the searching space may be reduced
and learning thereby becomes faster. The architecture of the
network becomes simpler due to the inherent reduction of the
redundancy among the connection weights.

A block diagram in Fig. 3 illustrates the entire procedure
for both the methods.

A. Method I

Let be a decision table, with and its
sets of condition and decision attributes, respectively. In this
method we assume that there is a decision attribute
corresponding to each object , in the sense that all
objects other than are indiscernible with respect to.

1) Rule Generation:For each -reduct
(say), we define a discernibility matrix [denoted ] from
the -discernibility matrix [given by (10)] as follows:

(11)

for .

Now for each object of , we consider the discernibility
function which is defined as

(12)

where is the disjunction of all members of .
is brought to its conjunctive normal form (CNF). For

, then gives rise to a dependency rule, viz.
, where corresponds to the object .

It may be noticed that each component of induces an
equivalence relation on as follows. If a component is a
single attribute , the relation is taken. If a component of
the CNF is a disjunct of attributes, say , we
consider the transitive closure of the union of the relations

. Let denote the intersection of all these
equivalence relations.

The dependency factor for is then given by

(13)

where POS , and is the lower
approximation of with respect to .

2) Knowledge Encoding:Here, we formulate a methodol-
ogy for encoding initial knowledge in the fuzzy MLP of [8],
following the above algorithm.

Let us consider the case of feature for class in
the -class problem domain. The inputs for theth repre-
sentative sample are mapped to the corresponding three-
dimensional feature space of ), ,
and , by (2). Let these be represented by,

, and , respectively. We consider only those attributes
which have a numerical value greater than some threshold

. This implies clamping those features
demonstrating high membership values with a one, while the
others are fixed at zero. In this manner an3 -dimensional
attribute-value (decision) table can be generated from the-
dimensional data set.

As sketched in the previous section, one generates the
dependency rules for each of theclasses, such that the
antecedent part contains a subset of the 3attributes, along
with the corresponding dependency factors.

Let us now design the initial structure of the three-layered
fuzzy MLP. The input layer consists of the 3attribute values
and the output layer is represented by theclasses. The hidden
layer nodes model the disjuncts in the antecedents of the
dependency rules. For each disjunct, corresponding to one
output class (one dependency rule), we dedicate one hidden
node. Only those input attributes that appear in a disjunct are
connected to the appropriate hidden node, which in turn is
connected to the corresponding output node. Each conjunct

is modeled at the output layer by joining the correspond-
ing hidden nodes. Note that a single attribute (involving no
disjuncts) is directly connected to the appropriate output node
via a hidden node.

Next we proceed to the description of the initial weight
encoding procedure. Let the dependency factor for a particular
dependency rule for class be by (13). The weight

between a hidden node and output node is set at
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(a)

(b)

Fig. 3. Block diagram of the rule generation and knowledge encoding procedure. (a) Method I. (b) Method II.

, where refers to the number of conjunctions
in the antecedent of the rule andis a small random number
taken to destroy any symmetry among the weights. Note that

and each hidden node is connected to only one output
node. Let the initial weight so clamped at a hidden node be
denoted as . The weight between an attribute [where

corresponds to low , medium or high ] and
hidden node is set to , such that is the

number of attributes connected by the corresponding disjunct.
Note that . The sign of the weight is set to positive
(negative) if the corresponding entry in row, column
is 1 (0). Thus, for an -class problem domain we have at
least hidden nodes. All other possible connections in the
resulting fuzzy MLP are set as small random numbers. It is to
be mentioned that the number of hidden nodes is determined
from the dependency rules.
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The connection weights, so encoded, are then refined by
training the network on the pattern set supplied as input.

B. Method II

Let be a decision table, with and
its sets of condition and decision attributes,

respectively.
1) Rule Generation:We divide the decision table

into tables , ,
corresponding to the decision attributes , where

and

The size of each is first reduced with
the help of a threshold on the number of occurrences of the
same pattern of attribute values. This will be elicited in the
sequel. Let the reduced decision table be denoted by, and

be the set of those objects of that occur in
.

Using (11) and (12), for each -reduct (say), we define
the discernibility matrix and for every object

, the discernibility function . Then is
brought to its CNF One thus obtains a dependency rule,
viz. , where is the disjunctive normal form (DNF)
of , . It may then be noticed that the
dependency factor for each is one [by (13)].

2) Knowledge Encoding:The knowledge encoding scheme
is similar to that described in Section IV-A. As this method
considers multiple objects in a class (unlike Method I), we
generate a separate 3 -dimensional attribute value table
for each class (where indicates the number of objects
in ).

Let there be sets of objects in the table
having identical attribute-values, and card

, such that and .
The attribute-value table can now be represented as an
3 array. Let denote the distinct elements
among such that . We
apply a heuristic threshold function defined by

(14)

All entries having frequency less than are eliminated from
the table, resulting in the reduced attribute-value table. Note
that the main motive of introducing this threshold function lies
in reducing the size of the resulting network. We attempt to
eliminate noisy pattern representatives (having lower values
of ) from the reduced attribute-value table. The whole
approach is, therefore, data dependent. The dependency rule
for each class is obtained by considering the corresponding
reduced attribute-value table. A smaller table leads to a simpler
rule in terms of conjunctions and disjunctions, which is then
translated into a network having fewer hidden nodes. The
objective is to strike a balance by reducing the network

complexity and reaching agood solution, perhaps at the
expense of not achieving thebestperformance.

While designing the initial structure of the fuzzy MLP, we
consider the union of the rules of theclasses. Here the
hidden layer nodes model the first level (innermost) operator
in the antecedent part of a rule, which can be either a conjunct
or a disjunct. The output layer nodes model the outer level
operator, which can again be either a conjunct or a disjunct.
As mentioned earlier, the dependency factor of any rule is
one in this method. The initial weight encoding procedure is
the same as described before. Since each class has multiple
objects, the sign of the weight is set randomly.

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS

Here we implement the two methods on real-life and
artificial data. The initial weight encoding scheme is
demonstrated and recognition scores are presented. The
data sets are available on the internet at http://isical.ac.in/
sushmita/data/vowsy.html.

The speech dataVowel [20] deals with 871 Indian Telugu
vowel sounds. These were uttered in a consonant-vowel-
consonant context by three male speakers in the age group
of 30–35 years. The data set (depicted in two dimensions
for ease of understanding) has three features:, , and
corresponding to the first, second, and third vowel formant
frequencies obtained through spectrum analysis of the speech
data. Fig. 4 provides the projection in the – plane,
depicting the six vowel classes— . These over-
lapping classes shall be denoted by , respectively,
in the sequel.

The synthetic dataPat consists of 880 pattern points in the
two-dimensional space – , as depicted in Fig. 5. There
are three linearly nonseparable pattern classes. The figure is
marked with classes 1 and 2 , while class 3
corresponds to the background region.

The training set considered 50% of the data selected ran-
domly from each of the pattern classes. The remaining 50%
data constituted the test set. It is found that the knowledge-
based model converges to a good solution with a small
number of training epochs (iterations) in both cases. Note
that the Vowel data consists of convex classes which may be
modeled by single representative points (objects). However,
the synthetic data set Pat consists of concave and disjoint
classes that can only be modeled by multiple representative
points (objects). As Method I considers single object classes
only, the synthetic data could not be used there. On the other
hand, both data sets are used in Method II which considers
multiple objects in a class.

A. Method I

The rough set-theoretic technique is applied on the vowel
data to extract some knowledge which is initially encoded
among the connection weights of the fuzzy MLP. The data
is first transformed into the 3 -dimensional linguistic space
of (2). A threshold of is imposed on the resultant
input components such that if and zero
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Fig. 4. Vowel data.

Fig. 5. Synthetic dataPat.

TABLE I
ATTRIBUTE-VALUE TABLE (VOWEL)

otherwise. The resulting information is represented in the form
of a decision table as in Table I.

Let us explain this transformation by an example. Let a
sample pattern from class have numerical components

, , . This is mapped to the
nine-dimensional linguistic space with components ,

, , , , ,

, , . Application of yields
a nine-dimensional vector (0, 1, 0, 1, 1, 0, 1, 0, 0). Let class

consist of pattern vectors. Each of them is transformed
to this nine-dimensional form with binary components. We
select the most representative template, i.e., the one with the
maximum number of occurrences, from this set oftemplates
to serve as object .

consists of six objects , the condition attributes
are , , , , , , , , and the decision
attribute set consists of the six vowel classes .
Each entry in row , column corresponds to the input
for class . Note that these inputs are used only for the
knowledge encoding procedure. During the refinement phase,
the network learns from the original 3-dimensional training
set with (2).

The decision table is abbreviated by putting all the decision
attributes in one column [this does not result in any ambiguity,
as we assume that object corresponds to the decision
attribute only ].

The -reducts obtained are as follows:

Let us consider the reduct set . Then
the discernibility function (in CNF) for ,
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Fig. 6. Initial weight encoding for the classc2 by Method I. remaining weights are initialized to small random values.

TABLE II
RECOGNITION SCORES (%) FOR VOWEL

obtained from the discernibility matrix [using (11)
and (12)] are

The dependency factors for the resulting rules
are , , 1, 1, 1, 1, using (13).

In the same way we consider the remaining-reducts and
find the corresponding rules and their dependency factors.
These factors are encoded as the initial connection weights
of the fuzzy MLP. Let us now explain the process by an
example. Consider the rule , viz.
with dependency factor . Here we require two
hidden nodes corresponding to classto model the operator

. The two links from the output node representing class
to these two hidden nodes are assigned weights of
to keep the weights equally distributed. From Table I we find
that the entries for , , in case of class are 0, 0,
1, respectively. The attributes and , connected by the
operator , are combined at one hidden node with link weights
of , , respectively, while the link weight for
attribute is clamped to (since there is no further
bifurcation). The resultant network is finally refined during

training using a training set. The performance of the network
is tested on the remaining test set. Fig. 6 illustrates the weight
encoding procedure for class.

Table II shows the results obtained with a three-layered
knowledge-based network whose connection weights are ini-
tially encoded as explained earlier. It is observed that this
method works more efficiently with a smaller network. There-
fore, we demonstrate the results corresponding to six hidden
nodes (the lower bound in this case) only. The performance
(at the end of 150 sweeps) was compared with those of a con-
ventional MLP and a fuzzy MLP [8], having the same number
of hidden nodes but with no initial knowledge encoding. It
was seen that the conventional MLP with six hidden nodes is
unable to classify the data. Hence this is not included in the
table. The performance of the Bayes’ classifier for multivariate
normal patterns, using different covariance matrices are for
each pattern class, is demonstrated. The choice of normal
densities for the vowel data has been found to be justified [21].
The performance of the package Quest [17], implementing
classification and regression trees [22], is also provided. The
rough-fuzzy MLP is observed to generalize better than all the
models for the test set, considering the overall scores (Net).
It may also be noticed that this method generated-reducts
of different sizes. In the table, indicates a
collection of -reducts with components (attributes).
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TABLE III
ATTRIBUTE-VALUE TABLE FOR CLASS C6 (VOWEL)

TABLE IV
REDUCED ATTRIBUTE-VALUE TABLE FOR CLASS C6 (VOWEL)

B. Method II

This method is applied to both the data sets Vowel and Pat.
A threshold of was used for the Vowel data. It can
be observed from Fig. 5 that the synthetic data set is uniformly
distributed over the entire feature space. Therefore, setting a
threshold greater than 0.5 caused problems here, such that for
certain objects all three input components corresponding to a
feature became clamped at zero. To circumvent this, we set

at 0.5 for Pat.
1) Vowel Data: Each class had a separate attribute value

table consisting of multiple objects. Let us consider class
as an example. The first column of Table III corresponds to
the objects which have the attribute-values indicated in the
respective rows. We observe that the rows correspond to 20,
9, 7, 5, 4, 4, 2, 2, 1, 1, 1 objects, respectively.

After applying the threshold of (14), objects are
eliminated from the table. Hence the reduced attribute-value
table (Table IV) now consists of four rows only.

The discernibility matrix for class is

The discernibility function for is

The disjunctive normal form of is

The resultant reducts are

The reduced attribute value table for reduct is

M1 L3 M3

y1 0 1 0
y2 1 1 0
y3 1 0 0
y4 1 0 1

The reduced discernibility matrix for is

The discernibility functions for each object
are

A dependency rule thus generated for classis

i.e.

The other rules for are

Similarly, we obtain 1, 2, 1, 1, 2 dependency rules for
classes , , , , , respectively. The dependency factor
of each rule is one. So, considering all possible combinations
we generate 12 sets of rules for the six classes. This leads to
12 possible network encodings.

A sample set of dependency rules generated for the six
classes is

This corresponds to the network represented in column 1 (of
rough-fuzzy MLP) in Table V.

To encode the rule for class we require one hidden node
for modeling the conjunct. The corresponding output node
is connected to the hidden node with initial link weight of
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TABLE V
RECOGNITION SCORES (%) FOR VOWEL

Fig. 7. Initial weights encoding by Method II. remaining weights are initial-
ized to small random values.

TABLE VI
ATTRIBUTE-VALUE TABLE FOR CLASS C2(PAT)

. Then the input attribute pair is connected
to this hidden node with link weights . A
sample network is illustrated in Fig. 7.

Table V demonstrates sample results obtained by the three-
layered knowledge-based network, at the end of 150 sweeps.
Unlike Method I, in all the cases Method II constructed
a network with six hidden nodes and six input nodes. Its
performance improves on that of the fuzzy and conventional
versions of the MLP, Bayes’ classifier, Quest and Method I
(as observed from Table II).

2) Synthetic Data:The attribute-value table for class is
depicted in Table VI. The rows correspond to 16, 12, 9, 8, 3,
2, 1 objects, respectively. Application of (14) results in the
elimination of objects . The -reducts generated
are , , , . We obtain four

-reducts for each of the other two classes. Considering all
possible combinations, we generate 64 sets of rules for the
three classes. This results in 64 possible network encodings.

A sample set of dependency rules for the three classes is

and

This corresponds to column 2 of Table VII.
The subnetwork for class consists of three hidden nodes,

each with initial output link weight of . The
input attribute pair is connected to the first of
these hidden nodes with link weights . The
remaining attributes and are
connected to the next two hidden nodes with link weights

.
Table VII provides a sample set of results obtained by a

three-layered knowledge-based network. Note that we have
simulated all 64 networks. In all cases the algorithm generated
six hidden nodes. The performance was compared with that
of a conventional and fuzzy MLP (all at the end of 1000
sweeps), -NN classifier and Quest [17]. The conventional
MLP failed to recognize class (e.g., the scores for classes

, , and are 87.1, 0.0, 51.6, respectively, for the test
set). The rough-fuzzy MLP generalizes better than the fuzzy
MLP (with one hidden layer having six hidden nodes) for the
test patterns considering the overall scores (Net). However,
the -NN classifier and Quest (classification and regression
tree) are found to provide better performance. Note that the

-NN classifier is reputed to be able to generate piecewise
linear decision boundaries and is quite efficient in handling
concave and linearly nonseparable pattern classes. It may
also be mentioned that the fuzzy MLP with more hidden
layers/nodes provides results better than that of the-NN [23].
However, we are restricted here in using six hidden nodes for
maintaining parity with the rough-fuzzy MLP. It is revealed
under investigation that the method of knowledge extraction
using rough sets can lead to over-reduction for the data shown
in Fig. 5.
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TABLE VII
RECOGNITION SCORES (%) FOR PAT

Remarks:

1) Method I is based on the assumption that there is one
decision attribute corresponding to each object, i.e., the
classes are considered to be convex with single represen-
tative points. This method is not a special case of Method
II, though the latter deals with multiple representative
points for each class. For example, in Method I we
simultaneously generated six rules corresponding to six
vowel clauses from the same attribute-value table. On
the other hand, Method II involves separate attribute-
value tables for each of the six vowel classes. Therefore,
a rule corresponding to one class is generated at a time
from one such table. This cannot be boiled down to
Method I as a special case.

2) We have transformed the decision table constructed
from the initial data by dividing it into subtables, each
corresponding to a decision attribute of the given system.
The initial table gave rise to discernibility functions
[computed by (12)] with too large a number of com-
ponents and hence, a network with a huge number of
hidden nodes. The computational complexity of such
a network was not considered to be feasible. On the
contrary, the subtables resulted in the generation of
discernibility functions with less components and thus
finally, a less cumbersome (more efficient) network.

3) Each decision table considered so far is clearly consis-
tent.

4) Any comparative study of the performance of our model
should consider the fact that here the appropriate number
of hidden nodes is automatically generated by the rough-
set theoretic knowledge encoding procedure. On the
other hand, both the fuzzy and conventional versions of
the MLP are required to empirically generate a suitable
size of the hidden layer(s). Hence, this can be considered
to be an added advantage.

VI. CONCLUSIONS

A methodology integrating rough sets with fuzzy MLP
for designing a knowledge-based network is presented. The
effectiveness of rough set theory is utilized for encoding the
crude domain knowledge through concepts like discernibility
matrix and function, reducts, and dependency factors. Two
algorithms, applicable to convex and concave decision regions,

are derived. This investigation not only demonstrates a way of
integrating rough sets with neural networks and fuzzy sets, but
also provides methods that are capable of generating the ap-
propriate network architecture and improving the classification
performance. The incorporation of fuzziness at various levels
of fuzzy MLP also helps the resulting knowledge-based system
to efficiently handle uncertain and ambiguous information both
at the input and the output.

As was remarked earlier, a study of an integration, in-
volving only neural nets and rough sets, was presented by
Yasdi [15]. However, only one layer of adaptive weights was
considered while the input and output layers involved fixed
binary weights. Max, Min and Or operators were applied at
the hidden nodes. Besides, the model was not tested on any
real problem and no comparative study was provided to bring
out the effectiveness of this hybrid approach. We, on the other
hand, consider here an integration of the three paradigms,
viz., neural nets, rough sets and fuzzy sets. The process of
rule generation and mapping of the dependency factors to the
connection weight values is novel to our approach. Moreover,
the three-layered MLP used has adaptive weights at all layers.
These are initially encoded with the knowledge extracted from
the data domain in the form of dependency rules, and later
refined by training. Effectiveness of the model is demonstrated
on both real-life and artificial data.

Our objective was to demonstrate the effectiveness of the
rough-fuzzy MLP ondifficult classification problems. The data
set used involves the overlapping classes of theVowel data
and the linearly nonseparable, nonconvex, disjoint classes of
the Pat data. Both cases could not be suitably classified by
the conventional MLP. The fuzzy MLP splits the feature
space into overlapping linguistic partitions, thereby han-
dling more local information about the input. The output is
modeled in terms of class membership values, appropriately
taking care of fuzzy/overlapping classes. This accounts for
the suitability of the fuzzy MLP in classifying these data.
Incorporation of rough set-theoretic concepts for encoding the
initial knowledge of the fuzzy MLP enabled the generation of
the appropriate network topology using nonempirical means.
Certain benchmark problems like the classification of Fisher’s
Iris data [24] have also been attempted. As the conventional
MLP was sufficiently accurate in classifying this data, there
was no noticeable improvement in the network performance
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by incorporating the more complicated rough-fuzzy concept.
This suggests that the rough-fuzzy MLP can be effectively
used for handling cases where the conventional MLP fails.

Rough set-theoretic techniques are easily applicable to
attribute-value tables with binary entries. This encouraged us
to transform the continuous-valued data to this form. However,
we are currently engaged in extending the algorithm to work
directly on real numbers lying in [0, 1]. This forms the next
part of our research.

There are several other related approaches for classification,
other than neural networks. These include the ID3 algorithm
[25] and classification and regression trees [22], [17]. ID3
can be very effective under certain conditions, specially if the
data consists of nonnumeric feature values [25]. Numeric data
needs to be optimally quantized to become applicable. This is
not a trivial problem. Application of ID3 to the 3-dimensional
linguistic feature space is an interesting alternative, to the
neuro-rough approach, for future investigation. Handling of
noisy classification problems, where the distributions of ob-
servations from the different classes overlap, is difficult using
the classification and regression trees [26]. This is evident from
Table II. Another interesting direction of future research would
be to incorporate the fuzzy membership concept in such tree
structures, to circumvent this problem.
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