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Rough Fuzzy MLP: Knowledge
Encoding and Classification

Mohua Banerjee, Sushmita Mitra, and Sankar K. Fallow, IEEE

Abstract—A new scheme of knowledge encoding in a fuzzy Generally, ANN’s consider a fixed topology of neurons
multilayer perceptron (MLP) using rough set-theoretic concepts connected by links in a predefined manner. These connec-
is de_zscrlbed. Crude domain knowledge is extracted from the_ data tion weights are usually initialized by small random values.
set in the form of rules. The syntax of these rules automatically . .
determines the appropriate number of hidden nodes while the Knowledge-based networks [10], [11] constitute a special class
dependency factors are used in the initial weight encoding. The of ANN’s that consider crude domain knowledge to generate
network is then refined during training. Results on classification the initial network architecture which is later refined in the
of speech and synthetic data demonstrate the superiority of the presence of training data. This process helps in reducing the
f‘imt;mngvﬁg Fgﬁiaﬂuiﬁgvﬁgéﬂgg;nvent|onal versions of the MLP sear(_:hing space an_d time While the _network traces thg optimal

solution. Node growing and link pruning are also made in order
to generate the optimal network architecture. In this paper, we
demonstrate how the theory of rough sets can be utilized for
extracting domain knowledge.

The theory of rough sets [12] has recently emerged as an-

. INTRODUCTION other major mathematical approach for managing uncertainty
HERE has recently been a spurt of activity to integratéat arises from inexact, noisy, or incomplete information. It
different computing paradigms such as fuzzy set theoryas been investigated in the context of expert systems, decision
neural networks, genetic algorithms, and rough set theory, fspport systems, machine learning, inductive learning and
generating more efficient hybrid systems that can be classifiatious other areas of application. It is found to be particularly
as soft computingmethodologies [1], [2]. The purpose iseffective in the area of knowledge reduction. The focus of
to provide flexible information processing systems that cabugh set theory is on the ambiguity caused by limited dis-
exploit the tolerance for imprecision, uncertainty, approximatgernibility of objects in the domain of discourse. The intention
reasoning, and partial truth in order to achieve tractabilitys to approximate aough (imprecise) concept in the domain
robustness, and low cost in real-life ambiguous situations [3jf discourse by a pair afxactconcepts, called the lower and

Neuro-fuzzy computing [4], [5] capturing the merits ofupper approximations. These exact concepts are determined
fuzzy set theory [6] and artificial neural networks (ANN’s) [7] by anindiscernibility relation on the domain, which, in turn,
constitutes one of the best-known hybridizations encompassggy be induced by a given set aftributesascribed to the
in soft computing. This integration promises to provide, to @bjects of the domain. These approximations are used to define
great extent, more intelligent systems (in terms of parallelisihe notions ofdiscernibility matrices discernibility functions
fault tolerance, adaptivity, and uncertainty management) (03], reducts and dependency factoril2], all of which play
handle real-life recognition/decision making problems. The fundamental role in the reduction of knowledge.
fuzzy multilayer perceptron (MLP) [8], [9] is such an example Many have looked into the implementation of decision
which incorporates fuzzy set-theoretic concepts at the infifies extracted from operation data using rough set formalism,
and output levels and during learning. It is found to be MOpecially in problems of machine learning from examples
efficient than the conventional MLP for classification and rulg,q control theory [14]. In the context of neural networks, an

generation. attempt of such implementation has been made by Yasdi [15].
The intention was to use rough sets as a tool for structuring
the neural networks. The methodology consisted of generating
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a neuron in any layefh) other than the input layef, = 0)
is given as

3 1
g = 1)

J
1+ exp <_Z ygib—l)w§;L—l)>

where ygh_l) is the state of theth neuron in the preceding

(h — L)th layer andw%b_l) is the weight of the connection
from the ith neuron in layer( — 1) to the jth neuron in
layer (7). For nodes in the input Iayey§0) corresponds to

the jth component of the input vector. Note thaf‘) =
Input > yi(h’l)wyb’l), as depicted in Fig. 1. The mean square

error in output vectors is minimized by the backpropagation
Fig. 1. Three-layered MLP. algorithm using a gradient descent with a gradual decrease of
the gain factor.
Rough set-theoretic techniques are utilized for extracting crude
domain knowledge, that is then encoded among the connect}ggnmput Vector
weights. Methods are derived to model 1) convex decision ) . )
regions with single object representatives and 2) arbitraryAN 7-dimensional pattemF; = [F1, Fia, ---, Fia] IS
decision regions with multiple object representatives. A threlEPresented as andlimensional vector [18]
layered fuzzy MLP [8] is considered. The input is modeled
in terms of the 8-dimensional linguistic feature space while Fi = [tt1ow(r ) (Fi), o thigh(F) (Fi)]
the output consists of class membership values. The feature 1,00 0 (0)
. L. . [yl ’ y2 ’ ’ y3n] (2)
space gives us the condition attributes and the output classes

the decision attributes, so as to result in a decision table. TWﬁere they. values indicate the membership functions of the

table, however, may be transformed, keeping the Complexggrresponding linguistier-setslow, medium and high along

of the network to be constructed in mind. Rules are then . 0) (0) S
. .each feature axis ang™”, - - -, y3, refer to the activations of
generated from the (transformed) table by computing relatl}/e u

reducts. The dependency factors of these rules are encodecpgs& neurons In the Input Iayer. The three overlappirgets
along a feature axis are depicted in Fig. 2.

the initial connection weights of the fuzzy MLP. The network When the input feature is numerical, we use thfizzy sets

Is next trained to refine its weight values. in the one-dimensional form), with range [0, 1], represented as
The knowledge encoding procedure, unlike most othgr ' ge 1, H.rep

methods [10], [11], involves a nonbinary weighting mecha-
nism based on a detailed and systematic estimation of tHe(£55 ¢ A)

available domain information. It may be noted that the appro- | — €l 2 A

priate number of hidden nodes is automatically determined. 2<1 - f) , for 9 SNE =l <A

The classification performance is found to be better than the = s — € 2 v 3
conventional and fuzzy versions of the MLP. The model is 1- 2<Jf , for0<||F; —cf < 3
capable of handling input in numerical, linguistic and set 0, otherwise

forms, and can tackle uncertainty due to overlapping classes.

. A brigf description ,Of the fuzzy MLP used is provided, o ¢ A(>0) is the radius of ther-function with ¢ as the
in Section Il. The basics of rough set theory are present&g‘jntral point

in Section Ill. In Section IV, we describe the knowledge When the input feature?; is linguistic, its membership

encoding methodology. The model is implemented on refi‘)’lues for ther-setslow (L), medium(M), and high (H)
life speech data as well as synthetic data (in Section \é e quantified as ’ ’

for classification. Comparison is provided with the standar
Bayes’ classifierk-nearest neighborg:{NN) classifier, clas-

sification and regression tree [17], and the conventional and . 7r< j<0 90); it Am)
fuzzy versions of the MLP (involving no initial knowledge). low = %’ L
The paper is concluded in Section VI. L M
Il. Fuzzy MLP MODEL 7r<Fj <%)7 . )\jh)
In this section we describe, in brief, the fuzzy MLP [8] L
which is used for designing the knowledge-based network. H

Consider the layered network given in Fig. 1. The output of
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Fig. 2. Overlapping linguisticll-sets.

(99N, . B. Output Representation
w J M ’ c]l’ Ji 0 95 i .
medium= , = Consider ani-class problem domain such that we have
L M [ nodes in the output layer. Let the-dimensional vectors
o, = [op1 -+ opn] @nd vy = [vp1 --- van] denote the
(. 0.95Y) Y mean and standard deviation, respectively, of the numerical
T\ M) I training data for thekth classc,. The weighted distance of

the training patter¥; from the kth classc; is defined as

LN o oA
0.95 A }: 2 T Ok S 1 ...
7r<Fj<—HO>;Cjza)\jz> Z”“_J [ Vkj }’ fork=1,.1 ()
high =

S

=1

L whereF;; is the value of thgith component of theéth pattern
. point.
7r<Fj<0'90 iy A ) The membership of théh pattern in class, lying in the
H Tom) 095 range [0, 1], is defined as [19]
M " H 1

pe(Fy) = W (5)

where positive constantg; and f. are the denominational

where¢;,, Aj,, ¢, A, ¢, Ay, indicate the centers and
radii of th? three I|ngtust|c propert:es along then axis, and exponential fuzzy generators controlling the amount of
and £3(0.95/L), F;(0.95/M), F;(0.95/H) denote the cor- ¢, inaqs in this class-membership set.

responding feature values; at which the three linguistic Then, for theith input pattern, the desired output of i
properties attain membership values of 0.95. output node is defined as

For example, the linguistic featuréow is represented

by three components corresponding to the membership d; = p;(Fy). (6)
values of the threer-setslow (1), medium(Af) and high
(H) (Fig. 2). 0.95/L means a membership of 0.95 fo
L. n(F;(0.95/L); ¢;,., Aj.,)/M refers to the membership
attained by thew-set M for that F; which causedx-
set L to have a membership value of 0.95. Similarly,
w(F;(0.95/L); ¢, , Az,)/H refers to the membership attained
by the n-set H for that F; which causedr-setL to have a  Let us present some requisite preliminaries of rough set
membership value of 0.95. theory. For details one may refer to [12] and [13].

IAccording to this definition a pattern can simultaneously
belong to more than one class, and this is determined from
the training set used during the learning phase.

Ill. ROUGH SET PRELIMINARIES
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An information systenis a pairS = (U, A), whereU is matrices and functions shall be the basic tools used in the
a nonempty finite set called theniverseand A a nonempty computation.
finite set ofattributes An attributea can be regarded as a Let U = {z; - z,} and A = {a; -+ ay} In the
function from the domairl/ to some value sev,. information systemS = (U, A). By the discernibility matrix

An information system may be represented as#irnibute- [denotedM(S)] of S is meant am x n-matrix such that
value table,in which rows are labeled by objects of the

universe and columns by the attributes. cij ={a € Ava(z:) # alz)y,  tj=1-n (1)
With every subset of attribute® C A, one can easily o discernibility function fs is a Boolean function ofm
associate an equivalence relatibs on U: Boolean variables;, - -, @, corresponding to the attributes

ai, -+, am, respectively, and defined as follows:
I = {(x, y) € U: for everya € B, a(z) = a(y)}. ! pectively
fs@, -, am) = /\ {\/(c“) 1<j<isn, ¢;# 9}
Then Ig = ﬂaeB 1,. (8)
If X C U, the sets{w € U: [z]p C X} and {x € where\/(c;;) is the disjunction of all variables with a € c;;.
U: [z]p N X # 0}, where[z]p denotes the equivalence clasg is seen in [13] that{a;,, - -, a; } is a reduct inS if and

of the objectr € U relative to/, are called theB-lowerand oy if g, A--- Aa;, is a prime implicant (constituent of the
B-upper approximationof X in & and denotedBX, BX, disjunctive normal ?orm) offs.

respectively_. _ ) . — The next concept that we shall require during rule gener-
X(C U) is B-exactor B-definablein S if BX = BX. afion, is that ofdependency factort may well happen for

It may be observed thaBX is the greates3-definable set B, C C A, that C dependson B, i.e., Iz C Ic—so that

contained in.X, and BX is the smallestB-definable set information due to the attributes i6¥ is derivable from that

containingX. Let us consider the following simple example 4,e to the attributes if. This dependency can be partial, in

Consider aninformation system{U, {a}), where the do- \yhich case one introduces a dependency fadtod < df < 1
main I/ consists of the students of a school, and there is a

single attributea—that of “belonging to a class.” Thell is daf = cardPOS;(C)) @)
partitioned by the classes of the school. carqU)

Now take the situation when an infectious disease has sprege. e PO$(C)
in the school, and the authorities take the two following step$s the set.

1) If at least one student of a class is infected, all the We are concerned with a specific type of information system
students of that class are vaccinated. Betlenote the S = (U, A), called adecision table.The attributes in such
union of such classes. a system are distinguished into two pang. conditionand

2) If every student of a class is infected, the class iecisionattributes. Classification of the domain due to decision
temporarily suspended. Lét denote the union of such attributes could be thought of as that given by an expert. One
classes. may now want to deal witbonsistentlecision tables, such that

Then B C B. Given this information, let the following a decision attribute does not assign more than one value to an
problem be poseddentify the collection of infected studentsobject, or for that matter, to objects indiscernible from each

Clearly, there cannot be a unique answer. But any ¢kat other with respect to the given (condition) attributes. Formally
is given as an answer, must contdnand at least one studentwe have the following.
from each class comprising. Let C, D C A be the sets of condition and decision

In other words, it must havé as itslower approximation attributes ofS, respectively. Theank of a decision attribute
and B as itsupper approximation. d € D, r(d), is the cardinality of the image(U) of the

I is then arough concept/set in the information systenfunction d on the value set/;. One can then assume that
(U, {a}). Vo= {1, -, r(d)}.

Further, it may be observed that any $égiven as another  The generalized decisiom $ corresponding tal is then
answer, isroughly equalto I, in the sense that both aredefined as a functiows: U — P({1, ---,r(d)}) such that
represented (characterized) Byand B. ds(z) = {i: I’ € [z]c and d(«’) = i}, P denoting

We now define the notions relevant to knowledge reductiothe power set. A decision tabl§ with D = {d} is called
The aim is to obtain irreducible but essential parts of theonsistent (deterministidj card(ds(z)) = 1 for anyz € U,
knowledge encoded by the given information system—these equivalently, if and only if PO&(d) = U/. Otherwise,S is
would constitutereductsof the system. So one is, in effect,nconsistent (nondeterministic).
looking for maximalsets of attributes taken from the initial Knowledge reduction now consists of eliminating super-
set (4, say), which induce theamepartition on the domain fluous values of the condition attributes by computing their
as A. In other words, the essence of the information remaimsducts, and we come to the notion ofedative reduct.
intact, and superfluous attributes are removed. Reducts havén attribute b ¢ B(C () is D-dispensable inB, if
been nicely characterized in [13] bgiscernibility matrices PO (D) = PO\ 1y (D); otherwiseb is D-indispensable
and discernibility functions A principal task in our proposed in B. If every attribute fromB is D-indispensable irB, B is
methods will be to compute reducts relative to a particuldp-independent inS. A subsetB of C' is a D-reduct inS if
kind of information system, and relativized versions of thesB is D-independent ir§ and PO (D) = POS;(D).

= UXE,C BX, and card denotes cardinality
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Relative reducts can be computed by using I Now for each object:; of U, we consider the discernibility

discernibility matrix. If U = {1, ---, x5}, it is an function f; which is defined as
n x n matrix [denotedMp(S)], the ijth component of
which has the form 5=\ {\/(cij): 1<j<n, j#i c;# @} (12)

o . ‘ ' o where\/(¢;;) is the disjunction of all members af;.
cij ={a € Cra(w;) # a(r;) and(wi, z;) ¢ Ip}  (10) s igéré&ght to its conjunctive normal form (Clilla. For
i=1,---,n, fj then gives rise to a dependency rujeviz.
F; — d;, whered; € D corresponds to the objeat.
It may be noticed that each component &f induces an
equivalence relation o/ as follows. If a component is a
single attributeb, the relationl, is taken. If a component of

fori,j =1,---,n.

The relative discernibility functiorfp is constructed from
the D-discernibility matrix in an analogous way &s from
the discernibility matrix ofS [cf. (7) and (8)]. It is once more
observed that [13]a;, - - -, q;, } is aD-reduct inS if and only

) . . = the CNF is a disjunct of attributes, say,, ---, b;, € B, we
if ai, A--- Ay, is a prime implicant offp. consider the transitive closure of the union of the relations
Ly, ;- Ibip. Let I, denote the intersection of all these
IV. NETWORK CONFIGURATION USING ROUGH SETS equivalence relations.

Here we formulate two methods for rule generation and The dependency factaif; for r; is then given by

knowledge encoding for configuring a network. Method | card(POS;(d;))
works on the assumption that each object of the domain of dfi = Ccard(U)
discourse corresponds to a single decision attribute. On the )
other hand, Method Il is able to deal with multiple object¥/Nere POJd:) = Uxcy, Li(X), and l;(X) is the lower
corresponding to one decision attribute. From the perspectfProximation ofX with respect tol;.
of pattern recognition, this implies using a single prototype to 2) Knowledge EncodingHere, we formulate a methodol-
model a (convex) decision region in case of Method |. F&9Y for encoding initial knowledge in the fuzzy MLP of [8],
Method II, this means using multiple prototypes to serve &gllowing the above algorithm.
representatives of any arbitrary decision region. Let us consider the case of featut§ for classc in

The crude domain knowledge, so extracted, is encodttf [-class problem domain. The inputs for thth repre-
among the connection weights, leading to the design ofSgntative samplé’; are mapped to the corresponding three-
knowledge-based network. Such a network is found to §émensional feature space pfow(r,,)(Fi), tmedivm(r;)(Fi),
more efficient than the conventional versions for the followin@Nd nign(r,) (F2), by (2). Let these be represented by,
reason. During learning an MLP searches for the set &f;, and H;, respectively. We consider only those attributes
connection weights that corresponds to some local minima.Which have a numerical value greater than some threshold
other words, it searches for that set of weights that minimizdd: (0.5 < Th < 1). This implies clamping those features
the difference between the target vector and the actual outgmonstrating high membership values with a one, while the
(obtained by the MLP). Note that there may be a largethers are fixed at zero. In this mannerl/an3n-dimensional
number of such minimum values corresponding to vario@tribute-value (decision) table can be generated fromnthe
goodsolutions. If we initially set these weights so as to be neflfmensional data set.
one suchgood solution, the searching space may be reducedAs sketched in the previous section, one generates the
and learning thereby becomes faster. The architecture of ffPendency rules for each of theclasses, such that the
network becomes simpler due to the inherent reduction of tRtecedent part contains a subset of theaBributes, along

(13)

redundancy among the connection weights. with the corresponding dependency factors.
A block diagram in Fig. 3 illustrates the entire procedure Let us now design the initial structure of the three-layered
for both the methods. fuzzy MLP. The input layer consists of the &ttribute values

and the output layer is represented by tlodasses. The hidden
layer nodes model the disjuncts) in the antecedents of the
A. Method | . ;
o ) ) dependency rules. For each disjunct, corresponding to one
Let S =< U, A > be a decision table, with’ and D its  gutput class (one dependency rule), we dedicate one hidden
sets of condition and decision attributes, respectively. In thigde. Only those input attributes that appear in a disjunct are
method we assume that there is a decision attridute D connected to the appropriate hidden node, which in turn is
corresponding to each objegt € U, in the sense that all connected to the corresponding output node. Each conjunct

objects other tham; are indiscernible with respect . (A) is modeled at the output layer by joining the correspond-
1) Rule Generation:For eachD-reductB = {by, ---, bx} ing hidden nodes. Note that a single attribute (involving no
(say), we define a discernibility matrix [denot®i, (B)] from  gjsjuncts) is directly connected to the appropriate output node
the D-discernibility matrix [given by (10)] as follows: via a hidden node.
Next we proceed to the description of the initial weight
¢; ={a € B:al(x;) # a(z,)} (11) encoding procedure. Let the dependency factor for a particular

dependency rule for class, be « by (13). The weight
fori,j =1,---,n. w,(i) between a hidden nodeand output node: is set at
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representation
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Training
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(b)

Classification

Fig. 3. Block diagram of the rule generation and knowledge encoding procedure. (a) Method 1. (b) Method II.

af(fac) + ¢, where fac refers to the number of conjunctionsnumber of attributes connected by the corresponding disjunct.
in the antecedent of the rule amds a small random number Note thatfacd > 1. The sign of the weight is set to positive
taken to destroy any symmetry among the weights. Note tt{atgative) if the corresponding entry in roky column a;

fac > 1 and each hidden node is connected to only one outpsit1l (0). Thus, for anl-class problem domain we have at
node. Let the initial weight so clamped at a hidden node teast! hidden nodes. All other possible connections in the
denoted ag. The Weightwgg)_ between an attribute; [where resulting fuzzy MLP are set as small random numbers. It is to
a corresponds to low(L), medium (M) or high (H)] and be mentioned that the number of hidden nodes is determined

hidden node: is set to3/(facd) + ¢, such thatfacd is the from the dependency rules.
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The connection weights, so encoded, are then refined dgmplexity and reaching aood solution, perhaps at the
training the network on the pattern set supplied as input. expense of not achieving theestperformance.
While designing the initial structure of the fuzzy MLP, we
B. Method Il consider the union of the rules of theclasses. Here the
hidden layer nodes model the first level (innermost) operator
in the antecedent part of a rule, which can be either a conjunct
or a disjunct. The output layer nodes model the outer level

Let S =< U, A > be a decision table, wittC' and
D ={d,, ---, d,} its sets of condition and decision attributes

reslpeF(;tl\I/elé ion'We divide the decisi bls — operator, which can again be either a conjunct or a disjunct.
U 31 ule eneratt;(l)n.se _'V' e;]t Z eC|s[|‘on_ta =< As mentioned earlier, the dependency factor of any rule is

, A > nto p tables &; =< Ui, A >, 4 = 1+, 1, qne iy this method. The initial weight encoding procedure is
corresponding to the decision attributed, - - -, d,,, where

the same as described before. Since each class has multiple
U=U,U...UU, and A; = C'U {d;}. objects, the sign of the weight is set randomly.
The size of eachs; (: = 1, ---, n) is first reduced with
the help of a threshold on the number of occurrences of the V- IMPLEMENTATION AND EXPERIMENTAL RESULTS
same pattern of attribute values. This will be elicited in the Here we implement the two methods on real-life and
sequel. Let the reduced decision table be denoted;bwand artificial data. The initial weight encoding scheme is
{zi,, ---, =4, } be the set of those objects bf that occur in demonstrated and recognition scores are presented. The
Zii=1--- n. data sets are available on the internet at http://isical.ac.in/
Using (11) and (12), for eacti;-reductB (say), we define sushmita/data/vowsy.html.
the discernibility matrix(M,, (5)) and for every object; € The speech datslowel [20] deals with 871 Indian Telugu
{ziy, ---, @i, }, the discernibility functionff. Then ff is vowel sounds. These were uttered in a consonant-vowel-
brought to its CNF One thus obtains a dependency rle consonant context by three male speakers in the age group
viz. P; — d;, whereF; is the disjunctive normal form (DNF) of 30-35 years. The data set (depicted in two dimensions
of fij, Jj € {i1, ---, 4,1 It may then be noticed that thefor ease of understanding) has three featufés:F», and F3;
dependency factadf; for eachr; is one [by (13)]. corresponding to the first, second, and third vowel formant
2) Knowledge EncodingThe knowledge encoding schemerequencies obtained through spectrum analysis of the speech
is similar to that described in Section IV-A. As this methodiata. Fig. 4 provides the projection in th&—F, plane,
considers multiple objects in a class (unlike Method 1), weepicting the six vowel classes®-a, i, u, ¢, 0. These over-

generate a separatg x 3n-dimensional attribute value tablelapping classes shall be denoted &y - - -, ¢, respectively,
for each classy, (wheren; indicates the number of objectsin the sequel.
in c). The synthetic dat®at consists of 880 pattern points in the
Let there bem setsOy, ---, O,, of objects in the table two-dimensional spacé}—I», as depicted in Fig. 5. There
having identical attribute-values, and cey) = ni,, ¢ = are three linearly nonseparable pattern classes. The figure is
1, -+, m, such thatny, > --- > ng and) .~ nr, = ne. marked with classes 1c;) and 2 (¢o), while class 3(cs)
The attribute-value table can now be represented as:&n corresponds to the background region.
3n array. Letnk/ niy, *- -, Ny, denote the distinct elements  The training set considered 50% of the data selected ran-
amongng, , - - -, Nk, such thatnkr > ngy, > - >ng . \We  domly from each of the pattern classes. The remaining 50%
apply a heunstlc threshold function deflned by data constituted the test set. It is found that the knowledge-
based model converges to a good solution with a small
zm: 1 number of training epochs (iterations) in both cases. Note
Ny — Mg that the Vowel data consists of convex classes which may be
Ty — “T—hﬂ . (14) modeled by single representative points (objects). However,

the synthetic data set Pat consists of concave and disjoint
classes that can only be modeled by multiple representative
points (objects). As Method | considers single object classes
All entries having frequency less thdm are eliminated from only, the synthetic data could not be used there. On the other

the table, resulting in the reduced attribute-value table. Ngigind, both data sets are used in Method Il which considers
that the main motive of introducing this threshold function liegultiple objects in a class.

in reducing the size of the resulting network. We attempt to
eliminate noisy pattern representatives (having lower values
of ny,) from the reduced attribute-value table. The whole" Method |

approach is, therefore, data dependent. The dependency rulhe rough set-theoretic technique is applied on the vowel
for each class is obtained by considering the correspondifigta to extract some knowledge which is initially encoded
reduced attribute-value table. A smaller table leads to a simp&mnong the connection weights of the fuzzy MLP. The data
rule in terms of conjunctions and disjunctions, which is theis first transformed into the 3 -dimensional linguistic space
translated into a network having fewer hidden nodes. Tieé (2). A threshold of7’h = 0.8 is imposed on the resultant
objective is to strike a balance by reducing the netwotikput components such thgf =1if y(o) > 0.8 and zero
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o 1—2
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400F
3001~
200 ) L B ! \ L
600 900 1200 1500 1800 2100 2400 2700
F2 in Hz
Fig. 4. \Vowel data.
Ls = 0.82, M3 = 0.7, H3 = 0.4. Application of T'h yields
825 111111111111 111111121111 a nine-dimensional vector (0, 1, 0, 1, 1, 0, 1, 0, 0). Let class
R EEE T E Tt ORI EE L E P EEEFELET c1 consist ofn; pattern vectors. Each of them is transformed
liﬁﬁﬁiﬁlllﬂﬂﬁﬁiﬁlnﬁ;iﬁiﬁl to this nine-dimensional form with binary components. We
11113111113 111111111 1111111111 select the most representative template, i.e., the one with the
FEEEETT EtTte aun maximum number of occurrences, from this setotemplates
amnn o, o, uun to serve as object.
F iﬂﬁ 232:33 ﬁi ggggg ﬂﬁi U consists of six objects,, - - -, xg, the condition attributes
131111 22222 111 22222 11111 are Ly, Lo, Ls, My, M>, M3, H,, H>, H3 and the decision
i1 aer gn, R um attribute setD consists of the six vowel classes, - - -, ce:
SETEET Eereet 111 Each entry in rowj, columni corresponds to the input”
11iiﬁﬁ111111ui:ﬁiﬁiﬂnnnnﬁﬁﬁl‘ for classc,;. Note that these inputs are used only for the
1111313111111111111111111111111111111 knowledge encoding procedure. During the refinement phase,
Hnnnnngs pnhaaiun | the network learns from the originah&imensional training
300 t witho < 4% <12
800 F, 2750 setwith0 <y < 1(2). . N
The decision table is abbreviated by putting all the decision
Fig. 5. Synthetic dat®at attributes in one column [this does not result in any ambiguity,
as we assume that objeat; corresponds to the decision
TABLE | attributec; only (¢ = 1, ---, 6)].
ATTRIBUTE-VALUE TABLE (VOWEL) The D-reducts obtained are as follows:
(T [ M W [ L [ My [Hy [ Ly [ My [ Hy [ D] (Lu AMiA L), (Lo A Lo A M), (Lo A My A Hz)
;] 0] 1 o [ 1 1 ol 1] o0]o g (L1 AN Hy A M3), (L1 A My AMs), (Ly AN My A L3 A Hs)
Tz 0L O 11 11 00 110 e (My AN Hy A Ly ANMs), (Hy ALy A My A Ms)
zz| 11 0 oo} o 1 ]0] o0 1 |c
s 1 0 0 1 0 ) 0 1 0 | e (Ml/\Hl/\MQ/\HQ), (Hl/\MQ/\HQ/\Mg)
Is 1 1 0 [¢] [¢] 1 o] 1 0 Cs (.2\41/\IT[;L/\.2\42/\.2\43)7 (Ml/\LQ/\MQ/\Lg)
Te| 1] 1 ] 0111010210101 (LyAMyALsAMs), (MiAMsyAHALg)

(Ma A Ha A Ls A Ms), (M1 A Mo ALy A Ms)
otherwise. The resulting information is represented in the formiA1 A M2 A Ls A Hz), (Ly A Hy A Ly A L3 A Hs)
of a decision tableS =< U, A > as in Table I. (Li ALy AMo A L3 AHs), (L AHy AHa A Ly A Hs)

Let us explain this transformation by an example. Let a(Ll A Mz A Hs ALs A Hs), (Hi A Ly A My A Ly A Ha)
sample pattern from class, have numerical components ’

Fy = 600, F, = 1500, F = 1200. This is mapped to the (1A M2AHa ALs A Hz), (My A Hy AMo A Ly A H).
nine-dimensional linguistic space with componehis= 0.4, Let us consider the reduct sBt= (L A M1 A M3). Then
M, =085 Hy = 0.7, Ly, = 0.8, M, = 09, H, = 04, the discernibility functionf;; (in CNF) fori = 1, ---, 6,
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O O O O

i L 2 Hy 1y M, H,

Fig. 6. Initial weight encoding for the class by Method I. remaining weights are initialized to small random values.

TABLE 1
RECOGNITION SCORES (%) FOR VOWEL
Bayes’ Q Fuzzy Rough-Fuzzy MLP
Attribs. class- U MLP Tty Ry I3
ifier E ’ Hi Lo, | LMz, | L HL, | M M, | B M [ MU HG | LMy | LMy,

S Ma, Hy, Ly,

T L3, Hy L3, H3 L3, H. Li, Hy Ho, My Ly, Mg Loy Hy
# links - - 90 16 16 16 18 18 18 20 20
# inputs - - 9 5 5 5 4 4 4 3 3
Training - - 80.88 80.65 83.18 79.96 83.41 82.26 79.5 80.65 83.87
T F:] 41.6 80.6 21.6 243 62.2 27.0 45.9 54.1 29.7 27.0 40.5
e a 91.1 73.3 82.2 88.9 82.2 88.9 844 86.7 88.9 88.9 84.4
s i 93.0 60.5 | 941 94.1 82.4 95.3 94.1 85.9 94.1 82.4 84.7
t u 94.7 76.3 87.8 90.2 87.8 87.8 87.8 87.8 87.8 87.8 90.2
s e 711 84.6 88.7 86.8 90.6 87.7 90.6 94.3 90.5 97.2 96.2
e o 71.1 86.7 95.1 93.9 95.1 95.1 93.9 95.1 93.9 95.1 93.9
t Net, 79.2 77.4 84.44 85.12 86.04 85.58 86.96 87.19 85.81 85.35 86.5

obtained from the discernibility matriMp(B) [using (11) training using a training set. The performance of the network

and (12)] are is tested on the remaining test set. Fig. 6 illustrates the weight
encoding procedure for clags.
b =LiA(M1V Ms), [ =Ly A(MyV Ms) Table Il shows the results obtained with a three-layered
B =M N M, =L ANMy A M knowledge-based network whose connection weights are ini-
£ =My A M, 25 — Ly A My A Ms tially encoded as explained earlier. It is observed that this
method works more efficiently with a smaller network. There-
The dependency factordf; for the resulting rules-;, i = fore, we demonstrate the results corresponding to six hidden
1,---,6are2/3,2/3,1, 1, 1, 1, using (13). nodes (the lower bound in this case) only. The performance

In the same way we consider the remainibgreducts and (at the end of 150 sweeps) was compared with those of a con-
find the corresponding rules and their dependency factoyentional MLP and a fuzzy MLP [8], having the same number

These factors are encoded as the initial connection weigBfshidden nodes but with no initial knowledge encoding. It
of the fuzzy MLP. Let us now explain the process by awas seen that the conventional MLP with six hidden nodes is

example. Consider the rule, viz. L; A (M; vV M3) — ¢, unable to classify the data. Hence this is not included in the
with dependency factorlf, = 2/3. Here we require two table. The performance of the Bayes’ classifier for multivariate
hidden nodes corresponding to classto model the operator normal patterns, using different covariance matrices are for
A. The two links from the output node representing class each pattern class, is demonstrated. The choice of normal
to these two hidden nodes are assigned weightédpf)/2 densities for the vowel data has been found to be justified [21].
to keep the weights equally distributed. From Table | we finfhe performance of the package Quest [17], implementing
that the entries foi.;, M, M3 in case of class, are 0, 0, classification and regression trees [22], is also provided. The
1, respectively. The attribute®/; and M3, connected by the rough-fuzzy MLP is observed to generalize better than all the
operatorv, are combined at one hidden node with link weightsiodels for the test set, considering the overall scores (Net).
of —(df2)/4, (df2)/4, respectively, while the link weight for It may also be noticed that this method generat&deducts
attribute L; is clamped to—(df;)/2 (since there is no further of different sizes. In the tablel,,,n = 5, 4, 3 indicates a
bifurcation). The resultant network is finally refined duringollection of D-reducts withn components (attributes).
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TABLE Il The resultant reducts are
ATTRIBUTE-VALUE TABLE FOR CLAss C's (VOWEL)
lLl ‘ M, ] A l I, | M l H l L3]M3 I Hs] My N L3N Ms, My AN L3 A\ Hs,
Ti—T |1 | 0 ]JO]1]o]o]1]o]o My NMzANHsz, My ALy A Mz A Hs.
Tg —Tgg |1 1 ol 1] o o1} o0 0
T30 —Z36 | 1 1 o} 1 o] o|o| o 1 The reduced attribute value table for redt A L3 AM; iS
Typ—Tq | 1 1 o1 0 oo 1 0
Tyo—Tqs | 1 1 0|1} o0 oo 1t 1
zs—2z9 | 1| O] O |21 ] oo ]|o]| 1 }]1 M, Ly M
Tg—z5 | 0| 1 o |1l oo |of| 1|1 Y1 0 1 0
zo—z3 | 0l 1 ol 1] o|o|1]o]o Y2 1 1 0
Tsq 1lolol1lolol1]l1]o u3 1 0 0
Tss ol 1]lol1|lo]olofo]1 Y1 L 0 L
Ts6 1 0 o1 0 oo o 1
The reduced discernibility matrix fakf; A Ls A M3 is
TABLE IV
REDUCED ATTRIBUTE-VALUE TABLE FOR CLass C's (VOWEL) ‘ Y1 Yo Y3 Yq
TL[MH L[ M[H][L]M]H] &
1 — Ty : (Y1) 1 0 0 1 0 0 1 [8) 0 wn
tm—zn:) | 1|1 {ol1]o|o]1]o0o]o Y2 (M1} ¢
cw—zs:(ys) | 1] 1 | o1 | o|lojolo]1 Y3 {M1, L3} {Ls} ¢
s —xn:(w) | 1] 1 o[ 1| 0o]Jojo}1]o ya | {Mi, Ls, M3} {Ls, M3} {Ms} ¢.

The discernibility functionsf,, for each objecty;, i =
B. Method I 1,2,3,4 are

This method is applied to both the data sets Vowel and Pat.

A threshold of’h = 0.8 was used for the Vowel data. It can Jouo =MyN (ML La) A(MyV LV M) = M,
be observed from Fig. 5 that the synthetic data set is uniformly ~ fy, =M1 ALs A(LsV M3) = My A L
distributed over the entire feature space. Therefore, setting a fys =(MyV L) ALy A Ms = M3 A Ly
threshold greater than 0.5 caused problems here, such that for . .
certain objects all three input components corresponding to a Tos =(MyV LV M) A (Lg V Ms) A My = Ms.
feature became clamped at zero. To circumvent this, we sefy dependency rule thus generated for classs
Th at 0.5 for Pat.

1) Vowel Data: Each class had a separate attribute value My vV (My ALs)V (M3 A Ls) V Ms — cg
table consisting of multiple objects. Let us consider class
as an example. The first column of Table Ill corresponds to
the objects which have the attribute-values indicated in the.l.he other rules forg are
respective rows. We observe that the rows correspond to 20,

9,7,5 4,4, 2, 2,1, 1, 1 objects, respectively. M,V Hs — cg

After applying the threshold@’r of (14), objectscys —z 56 are
eliminated from the table. Hence the reduced attribute-value My v Mz V Hs = c.
table (Table 1V) now consists of four rows only.

The discernibility matrix for classg is

i.e., MV M3 — cg.

Similarly, we obtain 1, 2, 1, 1, 2 dependency rules for
classesy, ¢, c3, ¢4, c5, respectively. The dependency factor

‘ Y1 Yo Y3 Ya of each rule is one. So, considering all possible combinations
we generate 12 sets of rules for the six classes. This leads to
n ¢ . .
12 possible network encodings.
b2 (M.} ¢ A sample set of dependency rules generated for the six
ys | {Mi, L3, H3} {Ls, Hs} ¢ classes is
ys | {My, L3, M3} {Ls, M3} {M;, Hs} ¢.
The discernibility functionf for ¢g is HiANLy; ANLg — 1, M;V Lz — cy,
Ml/\(Ml\/Lg\/Hg)/\(Lg\/Hg)/\(Ml\/Lg\/Mg) Mg\/Hg—>Cg, M3V Hz — ¢y
A (LgV M3) A (M3 Vv Hs) Mz —c5, M1V Mz — ce.
=My AN(LsV H3) A(L3 VvV M3) A (Ms Vv H3).

This corresponds to the network represented in column 1 (of
The disjunctive normal form of is rough-fuzzy MLP) in Table V.
(M A Ls A Ms) v (My A Ly A H) To enche the rule for clagg we require one hidden node
for modeling the conjunct. The corresponding output node
V (My A Ms AHz)V (My ALz A Ma A Hg). is connected to the hidden node with initial link weight of



BANERJEE et al. ROUGH FUZZY MLP 1213

TABLE V

RECOGNITION ScORES (%) FOR VOWEL
Attributes for Rough-Fuzzy MLP
€1,€3,C4 M ALy ALy, M3 v Hs; M3V H;
[¥) Myviz | M, v M;
s M; | H
[ M VvV M; ] MiVMaVvH; T MivM; T MV H; T MivM; | My VM3V H;
# links 18 19 18 18 18 19
Training 85.48 80.65 81.11 80.19 83.18 82.72
T ] 51.4 21.6 56.8 43.2 54.1 59.5
e a 84.4 88.9 82.2 88.9 82.2 75.6
s i 94.1 85.9 95.3 85.9 94.1 87.1
t u 90.2 86.6 87.8 87.8 90.2 87.8
s e 84.0 97.2 78.3 93.4 82.1 84.9
e o 93.9 93.9 95.1 93.9 93.9 93.9
t | Net 86.27 85.13 85.13 86.27 85.81 84.44

D-reducts for each of the other two classes. Considering all

possible combinations, we generate 64 sets of rules for the

three classes. This results in 64 possible network encodings.
A sample set of dependency rules for the three classes is

(Ll/\Mg/\HQ)\/(Ll/\Ml/\HQ)—>Cl,H1/\H2—>CQ
and

(Ml /\Hl) \/(Hl /\MQ/\HQ) \/(Ml /\MQ/\HQ) — C3.

This corresponds to column 2 of Table VII.
Fig. 7. Initial weights encoding by Method II. remaining weights are initial- The subnetwork for class; consists of three hidden nodes,

ized to small random values. each with initial output link weight ofdfs)/3(= 0.33). The
input attribute pair(M;, Hy) is connected to the first of
TABLE VI these hidden nodes with link weightdfs)/6(= 0.17). The
ATTRIBUTE-VALUE TABLE FOR CLASS C'o (PAT) remaining attributes H;, M, Hy) and (My, M,, H>) are
(L [ 36 |5, [ L [ M, | H; ) connected to the next two hidden nodes with link weights

(df3)/9(= 0.11).

:l __2;6 1 1 ' g é i 2 Table VII provides a sample set of results obtained by a
x;;_ xz: 0 1 1 1 1 0 three-layered knowledge-based network. Note that we have
T —Tgs | O | 1 1 ol 1 1 simulated all 64 networks. In all cases the algorithm generated
L6 —Tag | 1 1 ol ol o 1 six hidden nodes. The performance was compared with that
Te9 —Ts0 | O 1 1 0 0 1 of a conventional and fuzzy MLP (all at the end of 1000
Ty 1 1 0 1 0 0 sweeps),k-NN classifier and Quest [17]. The conventional

MLP failed to recognize class; (e.g., the scores for classes
c1, ¢2, and cg are 87.1, 0.0, 51.6, respectively, for the test
set). The rough-fuzzy MLP generalizes better than the fuzzy
MLP (with one hidden layer having six hidden nodes) for the
test patterns considering the overall scores (Net). However,
ggg k-NN classifier and Quest (classification and regression

layered knowledge-based network, at the end of 150 swee S?) are fo_u_nd _to provide better performance. Note_that t_he
Unlike Method I, in all the cases Method Il constructe .-NN classifier is reputed to be able to generate piecewise

a network with six hidden nodes and six input nodes. Jinear decision boundaries and is quite efficient in handling
performance improves on that of the fuzzy and conventiorg@ncave and linearly nonseparable pattern classes. It may

versions of the MLP, Bayes’ classifier, Quest and Method@so be mentioned that the fuzzy MLP with more hidden
(as observed from Table I1). layers/nodes provides results better than that ofcthiN [23].

2) Synthetic Data:The attribute-value table for class is However, we are restricted here in using six hidden nodes for
depicted in Table VI. The rows correspond to 16, 12, 9, 8, Blaintaining parity with the rough-fuzzy MLP. It is revealed
2, 1 objects, respectively. Application of (14) results in thender investigation that the method of knowledge extraction
elimination of objectszy¢ — x51. The D-reducts generated using rough sets can lead to over-reduction for the data shown
are Ly A Lo, H1 A Lo, Hy AN Ho, Ly A Hy. We obtain four in Fig. 5.

dfe = 1. Then the input attribute pa{iM/;, M3) is connected
to this hidden node with link weight$dfs)/2(= 0.5). A
sample network is illustrated in Fig. 7.

Table V demonstrates sample results obtained by the thr
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TABLE VI
RECOGNITION SCORES (%) FOR PAT

Rough-Fuzzy MLP
Ty A M A Hy) (A1 A My AHy VM A My N HY) Hy ALy A M)
V(Ly A My AHJ) V(M) A Hy ALp)
Hy H2 Ll A Hy H rH,
(M A Hy) (L1 A M) (L1 A My) (My A dy)
P | V(H) A My AHy) V(Ly A My A Hj) V(Ly ALy A My) V(Hy A Ly A My)
1T 1 3 V(M) A My A H) V(M) A Mg A Hj) V(M) ALy A M3) V(M) ALy A Mg)
22 22 22 22
- 5 5 6 5
- - - 82.0 84.05 77.68 80.87 83.83
T a 89.6 94.2 86.5 88.08 93.08 81.92 84.23 91.54
e [ 88.5 88.5 74.5 69.23 69.23 61.54 65.38 57.69
s c3 81.9 87.7 83.5 68.39 68.39 80.65 81.94 67.1
t Net | 86.8 | 916 | 848 | 80.05 82.99 80.27 82.31 80.95

k-NN
3% classifier

3w m SO
E-<NNC:'=J

#*
5
@

o g

Remarks: are derived. This investigation not only demonstrates a way of

1)

2)

3)

4)

Method | is based on the assumption that there is oiféegrating rough sets with neural networks and fuzzy sets, but
decision attribute corresponding to each object, i.e., tidso provides methods that are capable of generating the ap-
classes are considered to be convex with single represprepriate network architecture and improving the classification
tative points. This method is not a special case of Methgeerformance. The incorporation of fuzziness at various levels
I, though the latter deals with multiple representativef fuzzy MLP also helps the resulting knowledge-based system
points for each class. For example, in Method | we efficiently handle uncertain and ambiguous information both
simultaneously generated six rules corresponding to sk the input and the output.

vowel clauses from the same attribute-value table. OnAs was remarked earlier, a study of an integration, in-
the other hand, Method Il involves separate attributeolving only neural nets and rough sets, was presented by
value tables for each of the six vowel classes. Thereforgasdi [15]. However, only one layer of adaptive weights was
a rule corresponding to one class is generated at a tieensidered while the input and output layers involved fixed
from one such table. This cannot be boiled down thinary weights. Max, Min and Or operators were applied at
Method | as a special case. the hidden nodes. Besides, the model was not tested on any
We have transformed the decision table constructgghl problem and no comparative study was provided to bring
from the initial data by dividing it into subtables, eactput the effectiveness of this hybrid approach. We, on the other
corresponding to a decision attribute of the given systefand, consider here an integration of the three paradigms,
The initial table gave rise to discernibility functionsyiz, neural nets, rough sets and fuzzy sets. The process of
[computed by (12)] with too large a number of comyyle generation and mapping of the dependency factors to the
ponents and hence, a network with a huge number @nnection weight values is novel to our approach. Moreover,
hidden nodes. The computational complexity of suclye three-layered MLP used has adaptive weights at all layers.
a network was not considered to be feasible. On thgese are initially encoded with the knowledge extracted from
contrary, the subtables resulted in the generation @fe gata domain in the form of dependency rules, and later
discernibility functions with less components and thugsfined by training. Effectiveness of the model is demonstrated
finally, a I_e:?s cumbersom_e (more efﬂugnt) network. on both real-life and artificial data.

Each decision table considered so far is clearly CoNSIS-gyy objective was to demonstrate the effectiveness of the
tent. . r?ugh—fuzzy MLP ordifficult classification problems. The data
Any comparative study of the performance of our mOdget used involves the overlapping classes of tbevel data

should consider the fact that here the appropriate numbehrd the linearly nonseparable, nonconvex, disjoint classes of

gfeth I?P?eec?rerzlt(i)g elfnlsvaztdorzagilgél?nenerr?;ce;gdtijyréheorﬂut Fée Pat data. Both cases could not be suitably classified by
9 9p ! the conventional MLP. The fuzzy MLP splits the feature

other hand, both the fuzzy and conventional versions 0 . . T .
y ace into3™ overlapping linguistic partitions, thereby han-

the MLP are required to empirically generate a suitabgj. . . ) .
size of the hidden layer(s). Hence, this can be consider '9 more local information about the input. The output is

to be an added advantage. mo_deled in terms of class me_mbersh|p value_s, appropriately
taking care of fuzzy/overlapping classes. This accounts for

the suitability of the fuzzy MLP in classifying these data.

V1. CONCLUSIONS Incorporation of rough set-theoretic concepts for encoding the

A methodology integrating rough sets with fuzzy MLPAnitial knowledge of the fuzzy MLP enabled the generation of
for designing a knowledge-based network is presented. Tihe appropriate network topology using nonempirical means.
effectiveness of rough set theory is utilized for encoding tHgertain benchmark problems like the classification of Fisher's
crude domain knowledge through concepts like discernibilityis data [24] have also been attempted. As the conventional
matrix and function, reducts, and dependency factors. TWdLP was sufficiently accurate in classifying this data, there
algorithms, applicable to convex and concave decision regiomss no noticeable improvement in the network performance
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by incorporating the more complicated rough-fuzzy concepis] A. Czyzewski and A. Kaczmarek, “Speech recognition systems based

This suggests that the rough-fuzzy MLP can be effectively

used for handling cases where the conventional MLP fails.

we are currently engaged in extending the algorithm to wo

directly on real numbers lying in [0, 1]. This forms the nex{o

part of our research.
There are several other related approaches for classificati
other than neural networks. These include the ID3 algorith

[25] and classification and regression trees [22], [17]. ID3

can be very effective under certain conditions, specially if tHé2l
data consists of nonnumeric feature values [25]. Numeric data
needs to be optimally quantized to become applicable. This[3]

not a trivial problem. Application of ID3 to ther@dimensional

linguistic feature space is an interesting alternative, to tg A

neuro-rough approach, for future investigation. Handling

noisy classification problems, where the distributions of ohi25]
servations from the different classes overlap, is difficult usin
the classification and regression trees [26]. This is evident frdff)
Table II. Another interesting direction of future research would
be to incorporate the fuzzy membership concept in such tree

structures, to circumvent this problem.
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