Martingale Problems

Abhay G. Bhatt
Theoretical Statistics and Mathematics Unit
Indian Statistical Institute, Delhi

Lectures on Probability and Stochastic Processes III
Indian Statistical Institute, Kolkata

20–24 November 2008
Outline

1 Introduction
 • Definition
 • Well-posedness

2 Examples-Finite Dimensions
 • Brownian Motion
 • Poisson Process
 • Diffusions
 • Markov Jump Processes

3 Examples - Infinite Dimensions
 • Hilbert Space Valued Diffusion
 • Measure valued processes
Definition 1.1

An E-valued measurable process $(X_t)_{t \geq 0}$ defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is said to be a solution of the martingale problem for (A, μ) with respect to a filtration $(\mathcal{G}_t)_{t \geq 0}$ if

1. $\mathcal{L}(X_0) = \mu$
2. for every $f \in D(A)$

\[M^f_t = f(X_t) - \int_0^t Af(X_s) \, ds \]

is a $(\mathcal{G}_t)_{t \geq 0}$-martingale.
General Setup

- **State space** - E - a complete, separable metric space
 - $M(E)$ - real valued, measurable functions on E
 - $B(E)$ - real valued, bounded, measurable functions on E
 - $C(E)$ - real valued, continuous functions on E
 - $C_b(E)$ - real valued, bounded, continuous functions on E
- **operator** A on $M(E)$ with domain $D(A)$
 - $\mathcal{B}(E)$ - Borel σ-field on E
 - $\mathcal{P}(E)$ - space of probability measures on $(E, \mathcal{B}(E))$
- **Initial measure** $\mu \in \mathcal{P}(E)$
- For any process $(X_t)_{t \geq 0}$, $(\mathcal{F}_t^X)_{t \geq 0}$ will denote its natural filtration. i.e.
 \[\mathcal{F}_t^X = \sigma(X_s : 0 \leq s \leq t) \]

In Definition 1.1 if $(\mathcal{G}_t)_{t \geq 0} = (\mathcal{F}_t^X)_{t \geq 0}$, the σ-fields are dropped from the statement.
Solution of a martingale problem is defined only in a weak sense.

Definition 1.2

Uniqueness holds for the martingale problem for \((A, \mu)\) if any two solutions of the martingale problem have the same distributions.

Definition 1.3

The martingale problem for \((A, \mu)\) is *well-posed* if

1. there exists a solution \(X\) of the martingale problem for \((A, \mu)\)
Outline

1 Introduction
 - Definition
 - Well-posedness

2 Examples - Finite Dimensions
 - Brownian Motion
 - Poisson Process
 - Diffusions
 - Markov Jump Processes

3 Examples - Infinite Dimensions
 - Hilbert Space Valued Diffusion
 - Measure valued processes
Example 1 - Brownian Motion

Let B be a Standard Brownian Motion.

Then $M_t^1 = B_t$ and $M_t^2 = B_t^2 - t$ are martingales.

Let

$$E = \mathbb{R}, D(A) = \{f_1, f_2\}$$

$$f_1(x) = x, f_2(x) = x^2$$

$$Af_1(x) \equiv 0, Af_2(x) \equiv 1$$

Then for $i = 1, 2$

$$M_t^i = f_i(B_t) - \int_0^t Af_i(B_s)ds.$$

∴ $(B_t)_{t \geq 0}$ is a solution of the martingale problem for (A, δ_0)
Conversely,
Let \((X_t)_{t \geq 0} \) be a continuous solution of the martingale problem for \((A, \delta_0)\).
We have \(X_t \) and \(X_t^2 - t \) are martingales.
i.e. \(X_t \) is a continuous martingale with \(\langle X \rangle_t = t \).
Define \(g_s(x) = e^{isx} \) where \(i = \sqrt{-1} \). Note \(|g_s(x)| \leq 1 \).
Then \(g_s'(x) = isg_s(x), g_s''(x) = -s^2g_s(x) \)
By Ito’s formula
\[
\begin{align*}
dg_s(X_t) &= isg_s(X_t)dX_t - \frac{1}{2}s^2g_s(X_t)dt.
\end{align*}
\]
The stochastic integral is a martingale \(M_t \). Then for \(0 \leq r < t \)
\[
\begin{align*}
e^{isX_t} &= e^{isX_r} + M_t - M_r - \frac{1}{2}s^2 \int_r^t e^{isX_u} du
\end{align*}
\]
Example 1 - Brownian Motion (Contd.)

Let \(A \in \mathcal{F}_r^X \). Multiplying by \(e^{-isX_r}I_A \)

\[
I_Ae^{is(X_t-X_r)} = I_A + e^{-isX_r}I_A(M_t-M_r) - \frac{1}{2}s^2 \int_r^t I_Ae^{is(X_u-X_r)} du
\]

Taking expectations (of conditional expectations)

\[
\mathbb{E} \left[I_Ae^{is(X_t-X_r)} \right] = \mathbb{P}(A) + 0 - \frac{1}{2}s^2 \int_r^t \mathbb{E} \left[I_Ae^{is(X_u-X_r)} \right] du
\]

Let \(h(t) = \mathbb{E} \left[I_Ae^{is(X_t-X_r)} \right] \). Then

\[
h(t) = \mathbb{P}(A) - \frac{1}{2}s^2 \int_r^t h(u)du
\]

\[
h'(t) = -\frac{1}{2}s^2 h(t) \text{ with } h(r) = \mathbb{P}(A)
\]

\[
\mathbb{E} \left[I_Ae^{is(X_t-X_r)} \right] = h(t) = \mathbb{P}(A)e^{-\frac{1}{2}s^2(t-r)}.
\]
Example 1 - Brownian Motion (Contd.)

Since this holds for all $A \in \mathcal{F}_r^X$, we get

$$\mathbb{E}\left[e^{is(X_t-X_r)}|\mathcal{F}_r^X\right] = e^{-\frac{1}{2}s^2(t-r)} \text{ a.s.}$$

This implies

$$(X_t - X_r) \bigcup \mathcal{F}_r^X \text{ independent increments}$$

$$(X_t - X_r) \sim N(0, t-r) \text{ Stationary, Gaussian}$$

Thus X_t is a Brownian motion.

This is Levy’s Characterization of Brownian Motion

- The martingale problem for (A, δ_0) is well-posed in the class of continuous processes
Levy’s Characterization Theorem

Let \((X_t)_{t \geq 0}\) be a continuous \(\mathbb{R}^d\) valued process, with
\((X_t = (X_t^{(1)}, \ldots, X_t^{(d)}))\), such that for every \(1 \leq k, j \leq d\)

1. \(M_t^{(k)} = X_t^{(k)} - X_0^{(k)}\) is a continuous local martingale
2. \(\langle M^{(k)}, M^{(j)} \rangle_t = \delta_{kj} t\) i.e. \(M_t^{(k)} M_t^{(j)} - \delta_{kj} t\) is a continuous local martingale

Then \((X_t)_{t \geq 0}\) is a \(d\)-dimensional Brownian Motion.
Levy’s Characterization Theorem

Let \((X_t)_{t \geq 0}\) be a continuous \(\mathbb{R}^d\) valued process, with
\((X_t = (X_t^{(1)}, \ldots, X_t^{(d)}))\), such that for every \(1 \leq k, j \leq d\)

1. \(M_t^{(k)} = X_t^{(k)} - X_0^{(k)}\) is a continuous local martingale
2. \(\langle M^{(k)}, M^{(j)} \rangle_t = \delta_{kj} t\) i.e. \(M_t^{(k)}M_t^{(j)} - \delta_{kj}t\) is a continuous local martingale

Then \((X_t)_{t \geq 0}\) is a \(d\)-dimensional Brownian Motion.

(local martingale \((M_t):\) \(\exists\) a sequence of stop-times \(\tau_n \uparrow \infty\) such that for every \(n \geq 1\), the stopped process \((M^n_t)\) defined by
\[M^n_t = M_{t \wedge \tau_n} \]

is a martingale.)
Example 2 - Compensated Poisson Process

- Let \((N_t)_{t \geq 0}\) be a Poisson Process with intensity 1
- Define \(\tilde{N}_t = N_t - t\), (compensated Poisson process)
- Using independent increment property of \(N\), it follows that \(\tilde{N}_t\) and \(\tilde{N}_t^2 - t\) are martingales
- \((\tilde{N}_t)_{t \geq 0}\) is also a solution of the martingale problem for \((A, \delta_0)\) of Example 1

The martingale problem for \((A, \delta_0)\) is not well-posed though uniqueness holds in the class of continuous solutions.
Example 3 - Diffusions

Let $b(x) = (b_i(x))_{1 \leq i \leq d}$, $\sigma(x) = ((\sigma_{ij}(x)))_{1 \leq i,j \leq d}$ be measurable functions, and
$$(W_t)_{t \geq 0} = (W_t^{(1)}, \ldots, W_t^{(d)})_{t \geq 0}$$
be a d-dimensional Standard Brownian Motion.

Suppose that (the d-dimensional process) X is a solution of the Stochastic Differential Equation

$$dX_t = b(X_t)dt + \sigma(X_t)dW_t$$

$$dX_t^{(i)} = b_i(X_t)dt + \sum_{j=1}^{d} \sigma_{ij}(X_t)dW_t^{(j)} \quad 1 \leq i \leq d$$

$$X_t^{(i)} = X_0^{(i)} + \int_0^t b_i(X_s)ds + \sum_{j=1}^{d} \int_0^t \sigma_{ij}(X_s)dW_s^{(j)} \quad 1 \leq i \leq d$$
Then, by Ito’s formula, for $f \in C_b^2(\mathbb{R}^d)$

$$df(X_t) = \sum_{i=1}^{d} \partial_i f(X_t) dX_t^{(i)} + \frac{1}{2} \sum_{i,j=1}^{d} \partial_{ij} f(X_t) d\langle X^{(i)}, X^{(j)} \rangle_t$$
Then, by Ito's formula, for \(f \in C^2_b(\mathbb{R}^d) \)

\[
 df(X_t) = \sum_{i=1}^{d} \partial_i f(X_t) dX_t^{(i)} + \frac{1}{2} \sum_{i,j=1}^{d} \partial_{ij} f(X_t) d\langle X^{(i)}, X^{(j)} \rangle_t
\]
Then, by Ito’s formula, for \(f \in C^2_b(\mathbb{R}^d) \)

\[
\begin{align*}
 df(X_t) &= \sum_{i=1}^{d} \partial_i f(X_t) dX_t^{(i)} + \frac{1}{2} \sum_{i,j=1}^{d} \partial_{ij} f(X_t) d\langle X^{(i)}, X^{(j)} \rangle_t \\
 &= \sum_{i=1}^{d} \partial_i f(X_t) b_i(X_t) dt + \frac{1}{2} \sum_{i,j=1}^{d} \partial_{ij} f(X_t) (\sigma \sigma^T)_{ij}(X_t) dt \\
 &\quad + \sum_{i=1}^{d} \partial_i f(X_t) \sigma_{ij}(X_t) dW_t^{(j)}.
\end{align*}
\]
Then, by Ito’s formula, for $f \in C^2_b(\mathbb{R}^d)$

$$
\frac{df(X_t)}{dt} = \sum_{i=1}^{d} \partial_i f(X_t) b_i(X_t) dt + \frac{1}{2} \sum_{i,j=1}^{d} \partial_{ij} f(X_t) \langle X^{(i)}, X^{(j)} \rangle_t + \sum_{i=1}^{d} \partial_i f(X_t) \sigma_{ij}(X_t) dW_t^{(j)}.
$$

Let $Af(x) = \sum_{i=1}^{d} \partial_i f(x) b_i(x) + \frac{1}{2} \sum_{i,j=1}^{d} \partial_{ij} f(x) (\sigma \sigma^T)_{ij}(x)$
Thus for all $f \in D(A) = C^2_b(\mathbb{R}^d)$\)

$$f(X_t) - \int_0^t Af(X_s)ds$$

is a martingale.

Or, X_t is a solution of the (A, μ) martingale problem where $\mu = \mathcal{L}(X_0)$.

Converse!!!

Stroock-Varadhan Theory of Martingale Problems
Example 3 - Diffusions (Contd.)

Thus for all $f \in D(A) = C^2_b(\mathbb{R}^d)$

$$f(X_t) - \int_0^t Af(X_s)ds$$

is a martingale.

Or, X_t is a solution of the (A, μ) martingale problem where $\mu = \mathcal{L}(X_0)$.

Converse!!!

Stroock-Varadhan Theory of Martingale Problems
Example 3: Diffusions - Martingale Characterization

- $E = \mathbb{R}^d; D(A) = C_b^2(\mathbb{R}^d)$
- $b(x) = (b_i(x))_{1 \leq i \leq d}, \sigma(x) = ((\sigma_{ij}(x)))_{1 \leq i \leq d, 1 \leq j \leq d}$ be measurable functions
- $Af(x) = \sum_{i=1}^{d} \partial_i f(x)b_i(x) + \frac{1}{2} \sum_{i,j=1}^{d} \partial_{ij} f(x)(\sigma\sigma^T)_{ij}(x)$

Theorem 1

Let $(X_t)_{t \geq 0}$ (defined on some $(\Omega, \mathcal{F}, \mathbb{P})$) be a continuous \mathbb{R}^d valued solution of the martingale problem for (A, μ). Then \exists a d-dimensional Brownian motion $(W_t)_{t \geq 0}$, defined possibly on an extended probability space $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})$ such that $(X_t)_{t \geq 0}$ solves the SDE

$$dX_t = b(X_t)dt + \sigma(X_t)dW_t, \quad \mathcal{L}(X_0) = \mu. \quad (1)$$
Example 3: Diffusions - Martingale Characterization

Proof. Let \(a(x) = (\sigma \sigma^T)(x) \).
If \(f_k(x) = x^k, g_{kl}(x) = x^k x^l \in D(A) \), then

\[
M_t^k = X_t^k - \int_0^t b_k(X_s) ds
\]

(2)
is a martingale, since \(\partial_i f_k \equiv \delta_{ik}, \partial_{ij} f_k \equiv 0 \).
Example 3: Diffusions - Martingale Characterization

Proof. Let $a(x) = (\sigma \sigma^T)(x)$.
If $f_k(x) = x^k, g_{kl}(x) = x^k x^l \in D(A)$, then

$$M^k_t = X^k_t - \int_0^t b_k(X_s) ds$$

(2)

is a martingale, since $\partial_i f_k \equiv \delta_{ik}, \partial_{ij} f_k \equiv 0$.
Using the functions g_{kl} and their partial derivatives we can write

$$M^k_t M^l_t - \int_0^t a_{kl}(X_s) ds$$

as sum of martingales

$$g_{kl}(X_t) - \int_0^t A g_{kl}(X_s) ds, \quad \int_0^t Z^k_s dM^l_s, \quad \int_0^t Z^l_s dM^k_s$$

where $Z^j_s = \int_0^s b_j(X_r) dr, j = k, l$.
Example 3: Diffusions - Martingale Characterization

Thus

$$\langle M^k, M^l \rangle_t = \int_0^t a_{kl}(X_s) ds$$ (3)

However, $f_k, g_{kl} \not\in D(A)$.

Define $f_{k,n}, g_{kl,n} \in D(A)$:

Let $B(0, n) = \text{the ball of radius } n \text{ with center } 0$

$$f_{k,n}(x) = x^k, g_{kl,n}(x) = x^k x^l \text{ on } B(0, n)$$

$$f_{k,n}(x) = g_{kl,n}(x) = 0 \text{ on } B(0, n + 1)^c$$

Then using stop-times

$$\tau_n = \inf\{t \geq 0 : X_t \not\in B(0, n)\}$$

we see that (2) is a local martingale and such that (3) holds.
Example 3: Diffusions - Martingale Characterization

Now, if σ is invertible, define

$$W_t = \int_0^t \sigma^{-1}(X_s) dM_s, \text{ or}$$

$$W_t^i = \sum_{k=1}^{d} \int_0^t \sigma_{ik}^{-1}(X_s) dM^k_s, \quad 1 \leq i \leq d$$

Then, (2) $\implies (W_t^k)_{\{t \geq 0\}}$ is a local martingale; (3) \implies

$$\langle W^i, W^j \rangle_t = \sum_{k,l=1}^{d} \left\langle \int_0^t \sigma_{ik}^{-1}(X_s) dM^k_s, \int_0^t \sigma_{jl}^{-1}(X_s) dM^l_s \right\rangle$$

$$\quad = \sum_{k,l=1}^{d} \int_0^t \left(\sigma_{ik}^{-1} a_{kl}(\sigma^T)^{-1}_{lj} \right) (X_s) ds$$

$$\quad = \delta_{ii} t$$
Example 3: Diffusions - Martingale Characterization

Thus Levy’s Characterization theorem implies that W is a d-dimensional Brownian motion. Finally,

$$
\int_0^t \sigma(X_s) dW_s = \int_0^t dM_s = X_t - \int_0^t b(X_s) ds
$$

and hence X is a solution of the SDE (1).
Thus Levy’s Characterization theorem implies that W is a d-dimensional Brownian motion.

Finally,

$$\int_0^t \sigma(X_s)dW_s = \int_0^t dM_s = X_t - \int_0^t b(X_s)ds$$

and hence X is a solution of the SDE (1).

- When σ is singular - it is possible that the space Ω may not be rich enough to hold a Brownian motion.
- Intuitively, we plug in another Brownian motion wherever σ is degenerate.
Example 3: Diffusions - Martingale Characterization

Consider \((\Gamma, \mathcal{G}, \mathbb{Q})\) and a Brownian motion \((B_t)_{t \geq 0}\) defined on it.

Get \(d \times d\) (measurable) matrices \(\rho(x), \eta(x)\) satisfying:

- \(\rho \rho^T + \eta \eta^T = I_d\)
- \(\rho \eta = 0\)
- \((I_d - \sigma \rho)(I_d - \sigma \rho)^T = 0\)

Define on \((\Omega, \mathcal{F}, \mathbb{P}) \otimes (\Gamma, \mathcal{G}, \mathbb{Q})\)

\[
W_t = \int_0^t \rho(X_s) dM_s + \int_0^t \eta(X_s) dB_s
\]

Then \(W\) is a Brownian motion on the extended space and (1) holds.
Example 4: Markov Jump Process

- Let $\mu(x, \Gamma)$ be a transition function on $E \times \mathcal{E}$ and $\lambda > 0$.
- Let $\{Y_0, Y_1, Y_2, \ldots\}$ be a Markov chain
 - $P(Y_0 \in \Gamma) = \nu(\Gamma)$
 - $P(Y_{k+1} \in \Gamma | Y_0, \ldots, Y_k) = \mu(Y_k, \Gamma)$
- Let N be a Poisson process with intensity λ, independent of Y.
- Define X by
 $$X_t = Y_{N_t}, \quad t \geq 0$$
 Then X is a process which jumps at exponential times and the jump is dictated by the transition function $\mu(\cdot, \cdot)$.
- Define
 $$Pf(x) = \int_E f(y)\mu(x, dy)$$
Example 4: Markov Jump Process (Contd.)

Note for $F_1 \in \mathcal{F}_t^N$ and $F_2 \in \mathcal{F}_t^Y$

$$
\mathbb{E} \left[f(Y_{k+N_t}) \mathbb{I}_{F_1 \cap F_2 \cap \{N_t = l\}} \right] = \mathbb{E} \left[f(Y_{k+l}) \mathbb{I}_{F_1 \cap F_2 \cap \{N_t = l\}} \right]
= \mathbb{E} \left[P^k f(Y_l) \mathbb{I}_{F_2} \right] \mathbb{P}(F_1 \cap \{N_t = l\})
= \mathbb{E} \left[f(X_t) \mathbb{I}_{F_1 \cap F_2 \cap \{N_t = l\}} \right]
$$

- $F_1 \cap F_2 \cap \{N_t = l\}$ generate $\mathcal{F}_t = \mathcal{F}_t^N \vee \mathcal{F}_t^X$

- Thus

$$
\mathbb{E} \left[f(Y_{k+N_t})|\mathcal{F}_t \right] = P^k f(X_t) \text{ a.s.}
$$

- Using, independent increments of N

$$
\mathbb{E} \left[f(X_{t+s})|\mathcal{F}_t \right] = \mathbb{E} \left[f(Y_{N_{t+s}-N_t+N_t})|\mathcal{F}_t \right]
= \sum_{k=0}^{\infty} e^{-\lambda s} \frac{\lambda^k s^k}{k!} P^k f(X_t)
$$
Finally

\[T_t = \sum_{k=0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^k}{k!} P^k \]

defines a one parameter operator semigroup

Generator \(A \): \(T_t = e^{tA} \)

\[A = \lambda(P - I) \]

\[Af(x) = \lambda \int_E (f(y) - f(x)) \mu(x, dy) \]

\(X \) is a solution of the martingale problem for \((A, \nu)\)
Outline

1. Introduction
 - Definition
 - Well-posedness

2. Examples - Finite Dimensions
 - Brownian Motion
 - Poisson Process
 - Diffusions
 - Markov Jump Processes

3. Examples - Infinite Dimensions
 - Hilbert Space Valued Diffusion
 - Measure valued processes
Example 5: Hilbert Space Valued Diffusion

Let $E = H$, a real, separable Hilbert space, with inner product (\cdot, \cdot) and norm $\| \cdot \|$.

$L_2(H, H)$ - the space of Hilbert Schmidt operators on H
i.e. $\Sigma \in L_2(H, H)$ iff $\| \Sigma \|_{HS} = \sum_i (\Sigma \phi_i, \Sigma \phi_i) < \infty$, Hilbert Schmidt norm

Let $\sigma : H \to L_2(H, H)$, $b : H \to H$ be measurable

\[\| \sigma(h) \|_{HS} \leq K \]
\[\| b(h) \| \leq K \]
\[\| \sigma(h_1) - \sigma(h_2) \|_{HS} \leq K \| h_1 - h_2 \| \]
\[\| b(h_1) - b(h_2) \| \leq K \| h_1 - h_2 \| \]

for all $h, h_1, h_2 \in H$.
Example 5: Hilbert Space Valued Diffusion (Contd.)

- Fix a Complete OrthoNormal System \(\{ \phi_i : i \geq 1 \} \) in \(H \)
- Let \(P_n : H \to \mathbb{R}^n \) be defined by
 \[
P_n(h) = ((h, \phi_1), \ldots, (h, \phi_n)).
 \]
- \(D(A) = \{ f \circ P_n : f \in C^2_c(\mathbb{R}^n), n \geq 1 \} \),
 \[
 [A(f \circ P_n)](h) = \frac{1}{2} \sum_{i,j=1}^{n} (\sigma^*(h)\phi_i, \sigma^*(h)\phi_j) \partial_{ij} f \circ P_n(h) \\
 + \sum_{i=1}^{n} (b(h), \phi_i) \partial_i f \circ P_n(h)
 \]

Abhay G. Bhatt Chapter 1
Example 5: Hilbert Space Valued Diffusion (Contd.)

- The martingale problem for \((A, \mu)\) is well-posed.
- The unique solution \(X\) is continuous a.s.
- \(\exists\) Cylindrical Brownian motion \(B\) on some \((\Omega, \mathcal{F}, \mathbb{P})\)
 - \((B_t, h)\) is a 1-dimensional Brownian Motion for all \(h \in H\)
 - \(\mathbb{E}[(B_t, h_1)(B_t, h_2)] = (h_1, h_2)\) for all \(h_1, h_2 \in H\)
- It is a Hilbert space valued diffusion. i.e.

\[
 dX_t = \sigma(X_t)dB_t + b(X_t)dt
\]

for some Cylindrical Brownian motion \(B\)
Example 6: Branching Brownian Motion

Initial Configuration Individuals in the population are scattered in \mathbb{R}^d.

Spatial Motion Each individual, during its lifetime, moves in \mathbb{R}^d according to a Brownian motion, independently of all other particles.

Branching rate, α Each individual has an exponentially distributed lifetime α.

Branching mechanism, Φ When the individual dies, it leaves behind at the same location a random number of offsprings with probability generating function

$$
\Phi(s) = \sum_{l=0}^{\infty} p_l s^l
$$
Example 6: Branching Brownian Motion (Contd.)

Let X denote such a process

- state space $E' = \{(k, x_1, \ldots, x_k) : k = 0, 1, 2, \ldots, x_i \in \mathbb{R}^d\}$.
- Consider functions $f(k, x_1, \ldots, x_k) = \prod_{i=1}^{k} g(x_i)$ on E
- Generator of Brownian motion - $L_1 = \frac{1}{2} \Delta$
- Generator for the Branching process
 $L_2 h(k) = \sum_{l=0}^{\infty} \alpha k p_l (h(k - 1 + l) - h(k))$
- In the absence of branching

$$A_1 \left(\prod_{i=1}^{k} g(x_i) \right) = \sum_{j=1}^{k} L_1 g(x_j) \prod_{i \neq j} g(x_i)$$

so that $f(X_t) - \int_{0}^{t} A_1 f(X_s) ds$ is a martingale
Example 6: Branching Brownian Motion (Contd.)

- In presence of branching but no motion

\[A_2 \left(\prod_{i=1}^{k} g(x_i) \right) = \sum_{j=1}^{k} \alpha (\Phi(g(x_j)) - g(x_j)) \prod_{i \neq j} g(x_i) \]

- Independence of branching and motion suggest that the “martingale problem operator” for \(X \) should be

\[A = A_1 + A_2 \]
Example 6: Branching Brownian Motion (Contd.)

- In presence of branching but no motion

\[A_2 \left(\prod_{i=1}^{k} g(x_i) \right) = \sum_{j=1}^{k} \alpha (\Phi(g(x_j)) - g(x_j)) \prod_{i \neq j} g(x_i) \]

- Independence of branching and motion suggest that the “martingale problem operator” for X should be

\[A = A_1 + A_2 \]

- E' is cumbersome to work with
- order of particles is not important
Example 6: Branching Brownian Motion (Contd.)

- \(E = \left\{ \sum_{i=1}^{k} \delta_{x_i} : k = 0, 1, 2, \ldots; x_i \in \mathbb{R}^d \right\} \)
- \(E \subset \mathcal{M}(\mathbb{R}^d) \), space of positive finite measures on \(\mathbb{R}^d \)
- For \(\mu = \sum_{i=1}^{k} \delta_{x_i} \)

\[
\prod_{i=1}^{k} g(x_i) = e^{\langle \log g, \mu \rangle}
\]

- \(\mathcal{A} e^{\langle \log g, \mu \rangle} = e^{\langle \log g, \mu \rangle} \left\langle \frac{L_1 g + \alpha (\Phi(g) - g)}{g}, \mu \right\rangle \)

- \(\xi_t = \sum \delta_{X_t} \) is a solution of the martingale problem for \(\mathcal{A} \)