	(A) 1/9	(B) $4/7$	(C) 1/18	(D) $7/36$		
3	Consider the system of linear equations: $x+y+z=5, \ 2x+2y+3z=4.$ Then					
	 (A) the system is inconsistent (B) the system has a unique solution (C) the system has infinitely many solutions (D) none of the above is true 					
4	4. If $g'(x) = f(x)$ then $\int x^3 f(x^2) dx$ is given by					
		$xg(x^2)dx + C$ (If $xg(x$	2			
5	If $({}^{n}C_{0} + {}^{n}C_{1})({}^{n}C_{1})$ then k is equal to	$(C_1 + ^n C_2) \cdots (^n C_{n-1} -$	$+^n C_n) = k^n C_0^n C$	$C_1 \cdots {}^n C_{n-1},$		
	$(A) \frac{(n+1)^n}{n!}$	(B) $\frac{n^n}{n!}$ (C)	$C) \frac{(n+1)^n}{nn!}$	$(D) \frac{(n+1)^{n+1}}{n!}$		
6	6. Let $\{f_n\}$ be a sequence of functions defined as follows:					
$f_n(x) = x^n \cos(2\pi nx), x \in [-1, 1].$						
	Then $\lim_{n\to\infty} f_n(x)$ exists if and only if x belongs to the interval					
	(A) $(-1,1)$	(B) $[-1,1)$	(C) $[0, 1]$	(D) $(-1,1]$		
		1				

1. Suppose $f: \mathbb{R} \to \mathbb{R}$ is a continuous function such that $f(x) = \frac{2-\sqrt{x+4}}{\sin 2x}$

2. A person throws a pair of fair dice. If the sum of the numbers on

the dice is a perfect square, then the probability that the number 3

(D) $-\frac{1}{4}$

for all $x \neq 0$. Then the value of f(0) is

appeared on at least one of the dice is

(A) $-\frac{1}{8}$ (B) $\frac{1}{8}$ (C) 0

	(A) 1	(B) 2	(C) 3	(D) 4		
9.	. The set of all a satisfying the inequality					
	$\frac{1}{\sqrt{a}} \int_1^a \left(\frac{3}{2}\sqrt{x} + 1 - \frac{1}{\sqrt{x}}\right) dx < 4$					
	is equal to the interval					
	(A) $(-5, -2)$	(B) (1,4)	(C) $(0,2)$	(D) $(0,4)$		
10.	be the set of all derivative g' is differentiability a	Let C_0 be the set of all continuous functions $f:[0,1] \to \mathbb{R}$ and C_1 be the set of all differentiable functions $g:[0,1] \to \mathbb{R}$ such that the derivative g' is continuous. (Here, differentiability at 0 means right differentiability and differentiability at 1 means left differentiability.) If $T:C_1 \to C_0$ is defined by $T(g)=g'$, then				
	 (A) T is one-to-one and onto (B) T is one-to-one but not onto (C) T is onto but not one-to-one (D) T is neither one-to-one nor onto. 11. Suppose a, b, c are in A.P. and a², b², c² are in G.P. If a < b < c and a + b + c = 3/2, then the value of a is 					
11.						
	$(A) \frac{1}{2\sqrt{2}}$	$(B) -\frac{1}{2\sqrt{2}}$	(C) $\frac{1}{2} - \frac{1}{\sqrt{3}}$	(D) $\frac{1}{2} - \frac{1}{\sqrt{2}}$		
2						

7. Let S be a set of n elements. The number of ways in which n distinct non-empty subsets $X_1,...,X_n$ of S can be chosen such that $X_1\subseteq$

(B) 1

8. Let A be a 4×4 matrix such that both A and $\mathrm{Adj}(A)$ are non-null.

(C) n!

(D) 2^n

 $X_2 \cdots \subseteq X_n$, is

(A) $\binom{n}{1}\binom{n}{2}\cdots\binom{n}{n}$

If $\det A = 0$, then the rank of A is

12. The number of distinct even divisors of

$$\prod_{k=1}^{5} k!$$

is

- (A) 24 (B) 32 (C) 64 (D) 72
- 13. Let D be the triangular region in the xy-plane with vertices at (0,0),(0,1) and (1,1). Then the value of

$$\int \int_{D} \frac{2}{1+x^2} \, dx \, dy$$

is

- (A) $\frac{\pi}{2}$ (B) $\frac{\pi}{2} \ln 2$ (C) $2 \ln 2$ (D) $\ln 2$
- 14. Given a real number $\alpha \in (0,1)$, define a sequence $\{x_n\}_{n\geq 0}$ by the following recurrence relation:

$$x_{n+1} = \alpha x_n + (1 - \alpha) x_{n-1}, \quad n \ge 1.$$

If $\lim_{n\to\infty} x_n = \ell$ then the value of ℓ is

- (A) $\frac{\alpha x_0 + x_1}{1 \alpha}$ (B) $\frac{(1 \alpha)x_0 + x_1}{2 \alpha}$ (C) $\frac{\alpha x_0 + x_1}{2 \alpha}$ (D) $\frac{(1 \alpha)x_1 + x_0}{2 \alpha}$
- 15. A straight line passes through the intersection of the lines given by 3x 4y + 1 = 0 and 5x + y = 1 and makes equal intercepts of the same sign on the coordinate axes. The equation of the straight line is
 - (A) 23x 23y + 11 = 0

(B)
$$23x - 23y - 11 = 0$$

(C)
$$23x + 23y + 11 = 0$$

(D)
$$23x + 23y - 11 = 0$$

10.	The seri		3 · 6 · 9 · 10 · 13 · · ·	$\frac{\cdots 3n}{(3n+4)}x^n,$	x > 0	
	(B) con (C) con	verges for $0 <$ verges for all 2 verges for $0 <$ verges for $\frac{1}{2} <$	$x > 0$ $x < \frac{1}{2} \text{ and}$	d diverges for		≥ 1.
17.		(AB - BA)			h that the large smallest eigen	_
		st be positive st be 0		(B (D		
18.	The num	nber of saddle	points of	the function j	$f(x,y) = 2x^4 - $	$x^2 + 3y^2$
	(A) 1	(B) 0	(C) 2	(D) none of t	he above
19.	$x \in G$ s	_			There does not on the ot exist an $y \in$	
	(B) the	re exists an ele re exists an ele smallest expo	ement $g \in$	G such that		$g \in G$ is
	(D) nor	ne of the above	e is true.			
20.	The num	aber of real ro	ots of the	polynomial x	$x^3 - 2x + 7$ is	
	(A) 0	(I	3) 1	(C)	2	(D) 3

16. The series

21. Suppose that a 3×3 matrix A has an eigen value -1. If the matrix A+I is equal to

$$\begin{bmatrix}
 1 & 0 & -2 \\
 0 & 0 & 0 \\
 0 & 0 & 0
 \end{bmatrix}$$

then the eigen vectors of A corresponding to the eigenvalue -1 are in the form,

(A)
$$\begin{bmatrix} 2t \\ 0 \\ t \end{bmatrix}, t \in \mathbb{R}$$

(B)
$$\begin{bmatrix} 2t \\ s \\ t \end{bmatrix}, s, t \in \mathbb{R}$$

(C)
$$\begin{bmatrix} t \\ 0 \\ -2t \end{bmatrix}, t \in \mathbb{R}$$

(D)
$$\begin{bmatrix} t \\ s \\ 2t \end{bmatrix}, s, t \in \mathbb{R}$$

22. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x,y) = x^2(y-1)$. For $\vec{u} = (\frac{1}{2}, \frac{1}{2})$ and $\vec{v} = (3, 4)$, the value of the limit

$$\lim_{t \to 0} \frac{f(\vec{u} + t\vec{v}) - f(\vec{u})}{t}$$

is

- (A) $\frac{3}{4}$ (B) $\frac{6}{13}$ (C) $-\frac{1}{2}$
- (D) none of the above
- 23. Suppose ϕ is a solution of the differential equation y'' y' 2y = 0such that $\phi(0) = 1$ and $\phi'(0) = 5$. Then
 - (A) $\phi(x) \to \infty$ as $|x| \to \infty$ (B) $\phi(x) \to -\infty$ as $|x| \to \infty$ (C) $\phi(x) \to -\infty$ as $x \to -\infty$ (D) $\phi(x) \to \infty$ as $x \to -\infty$
- 24. A fair die is rolled five times. What is the probability that the largest number rolled is 5?
 - (A) 5/6

- (B) 1/6 (C) $1 (1/6)^6$ (D) $(5/6)^5 (2/3)^5$

25.	Two rows of n chairs, facing each other, are laid out. The number of					
	different ways that n couples can sit on these chairs such that each					
	person sits directly opposite to his/her partner is					
	(A) $n!$	(B) $n!/2$	(C) $2^n n!$	(D) $2n!$.		
26.	26. Consider the function $f: \mathbb{C} \to \mathbb{C}$ defined on the complex plane \mathbb{C} by $f(z) = e^z$. For a real number $c > 0$, let $A = \{f(z) \text{Re } z = c\}$ and $B = \{f(z) \text{Im } z = c\}$. Then (A) both A and B are straight line segments					
	(B) A is a circle	(B) A is a circle and B is a straight line segment				
	(C) A is a straight line segment and B is a circle					
	(D) both A and A	B are circles				

 $f(x) = \frac{x}{x-1}$ for x > 1, and $g(x) = 7 - x^3$ for $x \in \mathbb{R}$.

27. Consider two real valued functions f and g given by

Which of the following statements about inverse functions is true?

- (A) Neither f^{-1} nor g^{-1} exists
- (B) f^{-1} exists, but not g^{-1}
- (C) f^{-1} does not exist, but g^{-1} does
- (D) Both f^{-1} and g^{-1} exist.

28. A circle is drawn with centre at (-1,1) touching $x^2+y^2-4x+6y-3=0$ externally. Then the circle touches

(A) both the axes (B) only the x-axis

(C) none of the two axes (D) only the y-axis

- 29. Let $f(x-y) = \frac{f(x)}{f(y)}$ for all $x, y \in \mathbb{R}$ and f'(0) = p, f'(5) = q. Then the value of f'(-5) is
 - (A) q

- (B) -q (C) $\frac{p}{q}$ (D) $\frac{p^2}{q}$
- 30. Let

$$A = \begin{bmatrix} a & 1 & 1 \\ b & a & 1 \\ 1 & 1 & 1 \end{bmatrix}.$$

The number of elements in the set

$$\{(a,b) \in \mathbb{Z}^2 : 0 \le a, b \le 2021, \ rank(A) = 2\}$$

 is

- (A) 2021

- (B) 2020 (C) $2021^2 1$ (D) 2020×2021