Agreement Protocols
Classification of Faults

• Based on components that failed
 – Program / process
 – Processor / machine
 – Link
 – Storage
 – Clock

• Based on behavior of faulty component
 – Crash – just halts
 – Failstop – crash with additional conditions
 – Omission – fails to perform some steps
 – Byzantine – behaves arbitrarily
 – Timing – violates timing constraints
Classification of Tolerance

• Types of tolerance:
 – Masking – system always behaves as per specifications even in presence of faults
 – Non-masking – system may violate specifications in presence of faults. Should at least behave in a well-defined manner

• Fault tolerant system should specify:
 – Class of faults tolerated
 – What tolerance is given from each class
Core problems

- Agreement (multiple processes agree on some value)
- Clock synchronization
- Stable storage (data accessible after crash)
- Reliable communication (point-to-point, broadcast, multicast)
- Atomic actions
Overview of Consensus Results

- Let f be the maximum number of faulty processors.

- Tight bounds for message passing:

<table>
<thead>
<tr>
<th></th>
<th>Crash failures</th>
<th>Byzantine failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of rounds</td>
<td>$f + 1$</td>
<td>$f + 1$</td>
</tr>
<tr>
<td>Total number of processors</td>
<td>$f + 1$</td>
<td>$3f + 1$</td>
</tr>
<tr>
<td>Message size</td>
<td>polynomial</td>
<td>polynomial</td>
</tr>
</tbody>
</table>
Overview of Consensus Results

• *Impossible* in asynchronous case.
 – Even if we only want to tolerate a single crash failure.
 – True both for message passing and shared read-write memory.
Consensus Algorithm for Crash Failures

Code for each processor:

\[v := \text{my input} \]

at each round 1 through \(f+1 \):

- if I have not yet sent \(v \) then send \(v \) to all
- wait to receive messages for this round
- \(v := \text{minimum among all received values and current value of } v \)
- if this is round \(f+1 \) then decide on \(v \)
Correctness of Crash Consensus Algo

• Termination: By the code, finish in round $f + 1$.

• Validity: Holds since processors do not introduce spurious messages
 – if all inputs are the same, then that is the only value ever in circulation.
Correctness of Crash Consensus Algo

Agreement:
• Suppose in contradiction p_j decides on a smaller value, x, than does p_i.
• Then x was hidden from p_i by a chain of faulty processors:

- There are $f + 1$ faulty processors in this chain, a contradiction.
Performance of Crash Consensus Algo

- Number of processors $n > f$
- $f + 1$ rounds
- $n^2 \cdot |V|$ messages, each of size $\log |V|$ bits, where V is the input set.
Lower Bound on Rounds

Assumptions:

• \(n > f + 1 \)

• every processor is supposed to send a message to every other processor in every round

• Input set is \{0,1\}
Byzantine Agreement Problems

Model:

- Total of n processes, at most m of which can be faulty
- Reliable communication medium
- Fully connected
- Receiver always knows the identity of the sender of a message
- Byzantine faults
- Synchronous system
 - In each round, a process receives messages, performs computation, and sends messages.
Byzantine Agreement

• Also known as Byzantine Generals problem

 – One process x broadcasts a value v
 • Agreement Condition: All non-faulty processes must agree on a common value.
 • Validity Condition: The agreed upon value must be v if x is non-faulty.
Variants

• Consensus
 – Each process broadcasts its initial value
 • Satisfy agreement condition
 • If initial value of all non-faulty processes is v, then the agreed upon value must be v

• Interactive Consistency
 – Each process k broadcasts its own value v_k
 • All non-faulty processes agree on a common vector $(v_1, v_2, ..., v_n)$
 • If the k^{th} process is non-faulty, then the k^{th} value in the vector agreed upon by non-faulty processes must be v_k

• Solution to Byzantine agreement problem implies solution to other two
Byzantine Agreement Problem

• No solution possible if:
 – asynchronous system, or
 – $n < (3m + 1)$

• Lower Bound:
 – Needs at least $(m+1)$ rounds of message exchanges

• “Oral” messages – messages can be forged / changed in any manner, but the receiver always knows the sender
Proof

Theorem: There is no t-Byzantine-robust broadcast protocol for $t \geq N/3$

Scenario-0: T must decide 0

Scenario-1: U must decide 1

Scenario-2:
-- similar to Scenario-0 for T
-- similar to Scenario-1 for U
-- T decides 0 and U decides 1
Lamport-Shostak-Pease Algorithm

• Algorithm \(\text{Broadcast}(N, t) \) where \(t \) is the resilience

For \(t = 0, \text{Broadcast}(N, 0) \):

Pulse

1 The general sends \(\langle \text{value}, x_g \rangle \) to all processes, the lieutenants do not send.

Receive messages of pulse 1.

The general decides on \(x_g \).

Lieutenants decide as follows:

if a message \(\langle \text{value}, x \rangle \) was received from \(g \) in pulse-1 then decide on \(x \)
else decide on \(udef \)
For $t > 0$, $Broadcast(N, t)$:

Pulse
1 The general sends $\langle value, x_g \rangle$ to all processes, the lieutenants do not send.

Receive messages of pulse 1.

Lieutenant p acts as follows:

- if a message $\langle value, x \rangle$ was received from g in pulse-1
- then $x_p = x$ else $x_p = udef$

Announce x_p to the other lieutenants by acting as a general in $Broadcast_p(N - 1, t - 1)$ in the next pulse

Pulse
t +1 Receive messages of pulse $t + 1$.
The general decides on x_g.

For lieutenant p:

- A decision occurs in $Broadcast_q(N - 1, t - 1)$ for each lieutenant q
- $W_p[q] = decision in Broadcast_q(N - 1, t - 1)$
- $y_p = major(W_p)$
Features

• **Termination:** If $\text{Broadcast}(N, t)$ is started in pulse 1, every process decides in pulse $t + 1$

• **Dependence:** If the general is correct, if there are f faulty processes, and if $N > 2f + t$, then all correct processes decide on the input of the general

• **Agreement:** All correct processes decide on the same value

The Broadcast(N, t) protocol is a t-Byzantine-robust broadcast protocol for $t < N/3

Time complexity: $O(t + 1)$ Message complexity: $O(N^t)$