The Balanced Sliding Window Protocol
Definitions

- Two processes, \(p \) and \(q \), each sending an infinite array of words to the other

- **For Process** \(p \):

 \(\text{in}_p \): An infinite array of words to be sent to process \(q \)

 \(\text{out}_p \): An infinite array of words being received from process \(q \)

 \(\text{Initially for all } i, \text{out}_p[i] = udef \)

 \(S_p \): The lowest numbered word that \(p \) still expects to receive from \(q \)

 At any time, \(p \) has already written \(\text{out}_p[0] \) through \(\text{out}_p[S_p - 1] \)
Required Properties

Safe delivery:

- In every reachable configuration of the protocol

 \[
 \text{out}_p[0 \ldots s_p - 1] = \text{in}_q[0 \ldots s_p - 1] \text{ and } \text{out}_q[0 \ldots s_q - 1] = \text{in}_p[0 \ldots s_q - 1]
 \]

Eventual delivery:

- For every integer \(k \geq 0 \), a configuration with \(s_p \geq k \) and \(s_q \geq k \) is eventually reached
The protocol

- The packet, \(<\text{pack}, w, i>\), transmits the word \(w = in_p[i]\) to \(q\).

- The processes use constants \(l_p\) and \(l_q\) as follows:
 - Process \(p\) can send the word \(w = in_p[i]\) (as the packet, \(<\text{pack}, w, i>\)) only after storing all the words \(out_p[0]\) through \(out_p[i-l_p]\), that is, \(i < s_p + l_p\).
 - When \(p\) receives \(<\text{pack}, w, i>\), retransmission of words from \(in_p[0]\) through \(in_p[i-l_q]\) is no longer necessary.
The Sliding Windows

\[a_p \quad s_p + l_p \quad in_p \]

\[Q_q \quad p \quad Q_p \quad q \]

\[a_q \quad s_q + l_q \quad in_q \]

\[out_p \quad WWWWWWWu uRRu \quad s_p \]

\[WWWWWu uRRu u u \quad out_q \quad s_q \]
The Protocol

$S_p: \{ \ a_p \leq i < s_p + l_p \ \}$$
begin$$send < pack, in_p[i], i > to q$$end
$R_p: \{ < pack, w, i > \in Q_p \}$$
begin$$receive < pack, w, i > ;$$
if $out_p[i] = udef$ then$$begin$$out_p[i] = w ;$$
$$a_p = \max \{ a_p, i - l_q + 1 \};$$
$$s_p = \min \{ j \mid out_p[j] = udef \}$$
end$$// else ignore – retransmission$$end
$L_p: \{ < pack, w, i > \in Q_p \}$$
begin$$Q_p = Q_p \setminus \{ < pack, w, i > \}$$end
Protocol Invariant

\[P \equiv \forall i < s_p : out_p[i] \neq udef \wedge \forall i < s_q : out_q[i] \neq udef \]
\[\wedge < \text{pack, } w, i > \in Q_p \Rightarrow w = in_q[i] \wedge (i < s_q + l_q) \]
\[\wedge < \text{pack, } w, i > \in Q_q \Rightarrow w = in_p[i] \wedge (i < s_p + l_p) \]
\[\wedge out_p[i] \neq udef \Rightarrow out_p[i] = in_q[i] \wedge (a_p > i - l_q) \]
\[\wedge out_q[i] \neq udef \Rightarrow out_q[i] = in_p[i] \wedge (a_q > i - l_p) \]
\[\wedge a_p \leq s_q \]
\[\wedge a_q \leq s_p \]
Results

Safety: The protocol satisfies the requirement of safe delivery

Liveness:

- P implies $s_p - l_q \leq a_p \leq s_q \leq a_q + l_p \leq s_p + l_p$
- P implies that the sending of $<\text{pack}, \text{in}_p[s_q], s_q>$ by p or the sending of $<\text{pack}, \text{in}_q[s_p], s_p>$ by q is applicable.
 - *Hence no deadlock is possible*
- The protocol satisfies the requirement of eventual delivery