Medical Image Segmentation by Partitioning Spatially Constrained Fuzzy Approximation Spaces

Shaswati Roy and Pradipta Maji

Abstract—Image segmentation is an important pre-requisite step for any automatic clinical analysis technique. It assists in visualization of human tissues, as accurate delineation of medical images requires involvement of expert practitioners, which is also time consuming. In this background, the rough-fuzzy clustering algorithm provides an effective approach for image segmentation. It handles uncertainties arising due to overlapping classes and incompleteness in class definition by partitioning the fuzzy approximation spaces. However, the existing rough-fuzzy clustering algorithms do not consider the spatial distribution of the image. They depend only on the distribution of pixels to determine their class labels. In this regard, the paper introduces a new algorithm, termed as spatially constrained rough-fuzzy c-means (sRFCM) for medical image segmentation. The proposed sRFCM algorithm combines wisely the merits of rough-fuzzy clustering and local neighborhood information. In the proposed algorithm, the labels of local neighbors influence in the determination of the label of center pixel. The effect of local neighbors acts as a regularizer. Moreover, the proposed sRFCM algorithm partitions each cluster in possible probabilistic lower approximation or core region and probabilistic boundary region. The cluster centroid depends on the core and boundary regions, weight parameter, and neighborhood regularizer. A novel segmentation validity index, termed as neighborhood Silhouette, is proposed to find out the optimum values of regularizer and weight parameter, controlling the performance of the sRFCM. The efficacy of the proposed sRFCM algorithm, as well as several existing segmentation algorithms, is demonstrated on four brain MR volume databases and one HEp-2 cell image data.

Index Terms—Segmentation, medical imaging, rough sets, rough-fuzzy clustering, spatial information.

I. INTRODUCTION

An image contains a number of different regions which are homogeneous with respect to image intensities or its textural properties. Image segmentation is a process of delineating these multiple distinct regions of a given image. It acts as an important initial stage during the analysis of medical images. The quality of image segmentation reflects the success of different computer-aided diagnosis and therapies. Thresholding is simple but popular segmentation method. It partitions a scaler image by using one or more thresholds [1]. The local information or histogram based techniques [2], [3] are popular in this approach, which work reasonably well for the images containing adjacent high contrast sub-regions. However, thresholding methods are sensitive to outliers and noise, since spatial information of an image is not considered in this approach.

The local intensity information is incorporated into thresholding framework by Li et al. [4] to address this problem, while connectivity is used by Lee et al. [5] to solve the problem. For delineation of simple, small structures, the region-growing approach [6], [7], [8] is generally used, which is a popular technique for segmentation of medical images. In order to reduce the noise sensitive problem of region-growing approach, Mangin et al. [9] proposed a homtopic region growing algorithm. It can preserve the topology between initial and extracted regions. Neural networks, in both supervised [10] and unsupervised fashion [2], [11], are also successfully applied in the domain of image segmentation [12]. The snake model [13] has been used for image segmentation. Specifically, implicit active contour or level-set-based models have become popular in image segmentation [14]. Among other techniques, different approaches, based on k-means [15], [16], wavelet transform [17], graph-cut [18], and self-organizing maps [19], are applied in segmentation of images into various structures.

In medical image analysis, images incur noise and other imaging artifacts, such as outliers, intensity inhomogeneity, partial volume effect, etc. In addition, low resolution of the images, imbalance in tissue classes, and overlapping characteristics of different tissue classes make the segmentation problem challenging. In medical image segmentation, uncertainty is also one of the important problems. Both imprecision in computations and vagueness in segment or partition definition are some of the sources of this uncertainty. In this background, fuzzy c-means (FCM) algorithm is effective to capture the uncertainty in image segmentation [10], [20], [21]. In this approach, the uncertainties emerging from cluster boundaries or overlapping partitions are efficiently handled by assigning memberships to each pixel. The memberships of each pixel are inversely proportional to the relative distance between cluster prototypes and the pixel. In order to model different classes for segmentation, another popular framework existing in the literature is the probabilistic model. It uses expectation-maximization algorithm and assigns class labels of the pixels in an image based on their probability values. The probability is calculated using the distribution of intensity values. For image segmentation, the mostly used model is finite Gaussian mixture (FGM) model [22], [23].

Although both FGM and FCM based algorithms can efficiently capture uncertainties arising due to overlapping classes, the probabilistic or fuzzy membership of each pixel, assigned by them, is affected by different imaging artifacts. In order to reduce the difficulty due to the probabilistic or fuzzy memberships, the concept of clustering in fuzzy approximation spaces, popularly known as rough-fuzzy clustering, is presented in
Each cluster in the rough-fuzzy clustering algorithms is assumed to be composed of two regions, namely, core region or lower approximation and overlapping region or fuzzy boundary. The core region impacts on the overlapping characteristics of the final partition. The centroid of each cluster is calculated based on the weighted average of core region and overlapping boundary region. As a result, the rough-fuzzy clustering is able to compensate the effect of noise sensitivity of the FCM or FGM [24]. Moreover, it is able to locate a cluster of arbitrary shape [25]. The successful application of rough-fuzzy clustering in the domain of image segmentation [17], [24], [26] has shown its dominance over both FCM and FGM.

However, the FCM, FGM or rough-fuzzy clustering algorithm based existing works do not consider spatial information for segmentation of images. In effect, they are very much sensitive to different imaging artifacts. In general, an image can be represented by a number of homogeneous regions and every homogeneous region consists of one or more connected regions of pixels with similar properties. Hence, the FGM model based probabilistic framework is integrated with the hidden Markov random field model in [27] to reduce the effect of outliers and noise. The spatial constraint has also been incorporated into the FCM framework [28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38] to minimize the impacts of noise and outliers. In [39], Tolia and Panas introduced a fuzzy rule-based neighborhood system to incorporate the spatial information, which post-processes the clustering results of FCM. Ahmed et al. [29] included spatial information into the standard FCM, called FCM_S, to reduce the intensity non-uniformity artifacts by allowing the labelling of a pixel to be influenced by the labels in its immediate neighborhood. Chen and Zhang [36] introduced two modifications of the FCM_S, namely, FCM_S1 and FCM_S2, by including additional information, mean and median filtered images as the spatial information. Since these filtered images can be generated in advance, the execution time is reduced considerably. They also extended FCM_S, FCM_S1, and FCM_S2 to KFCM_S, KFCM_S1, and KFCM_S2, respectively, by kernel function substitution in order to disclose non-Euclidean structures inherent in image. In [32], the fast generalized FCM algorithm is introduced by modifying the FCM_S or its variants. It assigns different values of regularizer parameter to different neighbors, which can be obtained from local spatial gray-level relationships.

Krinidis and Chatzis [37] proposed an algorithm, namely, FLICM (fuzzy local information c-means), which includes a fuzzy factor into the classical FCM. This fuzzy factor is independent of using any regularization parameter. Gong et al. [31] improved the FLICM, in which the kernel method with non-Euclidean distance measure is used and a trade-off weighted fuzzy factor is introduced to make it robust to the outliers and noise of the image. Liu and Pham [40] introduced spatial constraints into fuzzy hyperplane-based clustering algorithm, where cluster centers are represented by hyperplanes. They used T1-weighted and FLAIR sequence scans, co-registered to each other, for segmentation of brain soft tissues. Zhang et al. [30] combined FCM_S and Student’s t-distribution with mean template to estimate the prior probability of belongingness of a pixel to a class. Wang and Bu [34] presented a segmentation method for images, integrating the FCM and spatial information, in which the image feature is represented using a similarity measure. Finally, the image segmentation is performed using the FCM algorithm, where the membership function depends on inter-pixel correlation. Liew and Yan [38] also introduced an adaptive spatial FCM algorithm, in which a dissimilarity index is introduced. This index considers spatial interactions among voxels, which, in effect, reduces the impact of noise and ambiguity in classification. Wan et al. [41] proposed Bayesian nonlocal spatial information based FCM algorithm. In [42], the correlation between a pixel and its neighboring pixels is considered to modify the objective function of FCM, by adaptive weighting fusion of local mean information; while Zhang et al. [43] introduced sparsity and neighbor information constraint in the fuzzy clustering framework. Recently, deep learning models [44] have also been applied in the domain of medical image segmentation, due to their ability to provide high segmentation accuracy.

In this regard, the paper introduces a novel rough-fuzzy clustering algorithm for image segmentation, named spatially constrained rough-fuzzy c-means (sRFCM). It judiciously incorporates neighborhood information of a pixel into existing robust rough-fuzzy c-means (rRFCM) [25]. It considers the spatial distribution of a pixel, and based on this neighboring information, it determines the class label of that pixel. In this way, it improves the quality of image segmentation. As a result, the sRFCM can avoid the problem of sensitivity to imaging artifacts of existing rough-fuzzy clustering algorithms. The relative importance of the regularization term controls the neighborhood effect. It also balances between reduction of noise and preserving the image details. Each cluster of the sRFCM algorithm consists of a core and a boundary regions. The boundary region is fuzzy, while the core region is possibilistic in nature. While the integration of both possibilistic as well as probabilistic membership functions of fuzzy sets handles efficiently overlapping segments in presence of noise, the vagueness, incompleteness, and uncertainty in the definition of a given class can be dealt by the concept of boundary region and lower approximation of rough sets. The class representative is determined by the weighted average of possibilistic core region and fuzzy overlapping region, as well as the neighborhood regularizer. A new quantitative index, termed as neighborhood Silhouette, is introduced to determine the optimal values of various parameters controlling the performance of the proposed sRFCM algorithm. The efficacy of the proposed sRFCM is demonstrated with respect to several existing related algorithms on a set of benchmark data sets both qualitatively and quantitatively.

II. sRFCM: Spatially Constrained Rough-Fuzzy Clustering Algorithm

In this section, a new c-means algorithm, termed as spatially constrained rough-fuzzy c-means (sRFCM), is presented for delineation of different sub-regions of a given image. The proposed algorithm wisely includes the neighborhood information
of pixels into existing rRFCM algorithm [25]. In the proposed algorithm, the class labels of the local neighboring pixels influence in the determination of the class label of center pixel. The effect of neighborhood plays the role of a regularizer and forces the labelling to be piecewise-homogeneous. This regularization has an important role in segmenting a noise-corrupted image. Moreover, the uncertainty and incompleteness in class definition is dealt using the core and boundary regions of rough sets of the proposed c-means algorithm, while overlapping clusters in noisy environment is effectively handled by the integration of both fuzzy and possibilistic memberships of fuzzy set.

A. Objective Function

Let \(V = \{v_1, \cdots, v_c\} \) be the set of \(c \) centroids, where \(v_i \in \mathbb{R}^m \) and \(X = \{x_1, \cdots, x_N\} \) be the set of \(n \) pixels, where \(x_j \in \mathbb{R}^m \). In the sRFCM, each segment or class \(\beta_i \) is represented by a class prototype or centroid \(v_i \), a possibilistic core region \(\widetilde{A}(\beta_i) \) and a fuzzy boundary \(B(\beta_i) \). Let \(\overline{A}(\beta_i) \) be the upper approximation of class \(\beta_i \). Therefore, \(B(\beta_i) = [\overline{A}(\beta_i) \setminus A(\beta_i)] \). The objective function of the sRFCM algorithm can be computed separately for boundary region and lower approximation as follows:

\[
J = \sum_{i=1}^{c} J_i; \quad \text{where} \quad J_i = \omega J_i^L + (1 - \omega) J_i^B. \tag{1}
\]

Here, \(J_i^L \) and \(J_i^B \) are the objective functions for lower approximation and boundary region of cluster \(\beta_i \), respectively, which are represented as follows:

\[
J_i^L = \sum_{x_j \in A(\beta_i)} \nu_{ij}^m d_{ij}^2 + \eta_i \sum_{x_j \in A(\beta_i)} (1 - \nu_{ij})^\mu \frac{1}{R} \sum_{x_j \in A(\beta_i)} \nu_{ij}^2 + \sum_{x_r \in N_i} d_{ir}^2; \tag{2}
\]

\[
J_i^B = \sum_{x_j \in B(\beta_i)} \mu_{ij}^m d_{ij}^2 + \frac{\alpha}{N_R} \sum_{x_j \in B(\beta_i)} \mu_{ij} + \sum_{x_r \in N_i} d_{ir}^2; \tag{3}
\]

where \(d_{ij}^2 = ||x_j - v_i||^2 \), \(\mu_{ij} \) is the probabilistic or fuzzy membership function, and \(\nu_{ij} \) represents the possibilistic membership function subject to the constraints given as follows:

\[
\sum_{i=1}^{c} \mu_{ij} = 1, \forall j; \quad 0 < \sum_{j=1}^{n} \mu_{ij} < n, \forall i; \tag{4}
\]

\[
0 < \sum_{j=1}^{n} \nu_{ij} \leq n, \forall i; \quad \text{and} \quad \max_i \nu_{ij} > 0, \forall j; \tag{5}
\]

and \(\eta_i \) is the scale parameter, which is given by

\[
\eta_i = K \cdot \left[\sum_{j=1}^{n} \nu_{ij}^m d_{ij}^2 \right] \left[\sum_{j=1}^{n} \nu_{ij}^2 \right]^{-1}; \tag{6}
\]

which represents the size of \(\beta_i \) and is termed as zone of influence of \(\beta_i \). Generally, \(K \) is considered to be 1. If the first and third terms of the criterion function for lower approximation, presented in (2), are only considered, without considering the second term, the function is minimized by assigning all memberships to 0, which is its trivial solution. However, according to the theory of rough sets, the memberships of the objects belonging to lower approximation of a cluster should be as high as possible. So, the second term of (2) forces the membership \(\nu_{ij} \) to be as large as possible, thus avoiding the trivial solution.

The relative importance of core and boundary regions depends on the parameter \(\omega \), while the probabilistic and possibilistic fuzzifiers are represented by \(m_1 \in [1, \infty) \) and \(m_2 \in [1, \infty) \), respectively. Typically, \(m_1 \) and \(m_2 \) are considered to be 2.0. The parameter \(N \) is the set of neighboring pixels falling into a specified window \(R \times R \) around \(x_j \) and \(N_R \) is the cardinality of \(N \). The parameter \(\alpha \in [0,1] \) controls the influence of the neighboring term. Hence, it balances between reduction of noise and preserving the image details. If the neighborhood window is in a homogeneous region with center pixel being noise, then the center pixel is smoothed by its neighboring pixels appropriately during membership and cluster prototype computation.

In accordance with the notion of rough sets, if a pixel \(x_j \) exists in the core region or lower approximation \(\overline{A}(\beta_i) \) of a class or segment \(\beta_i \), then \(x_j \) does not belong to the lower approximations or boundary regions of any other clusters. In other words, the pixel \(x_j \) belongs to the cluster or segment \(\beta_i \) definitely. Therefore, other centroids and clusters do not contribute in the calculation of the memberships of the pixels lying in core region of a cluster. In addition, different pixels of a core region may have different influences on the corresponding centroid and cluster according to their distances from the corresponding cluster prototype. On the other hand, a pixel \(x_j \) belonging to the boundary region \(B(\beta_i) \) of segment \(\beta_i \) indicates that \(x_j \) possibly belongs to the segment \(\beta_i \) and potentially belongs to another cluster. So, the effect of the pixels present in boundary regions of different clusters is different in computation of these cluster centroids and the positions of all cluster centroids determine the memberships of the boundary region pixels. So, in the sRFCM, the membership values of pixels lying in core and boundary regions are similar to (7) of possibilistic c-means and (8) of fuzzy c-means, respectively, excluding spatial constraints of the sRFCM.

B. Membership Functions

The possibilistic and probabilistic membership functions, namely, \(\nu_{ij} \) and \(\mu_{ij} \), of a pixel \(x_j \) in cluster \(\beta_i \) can be derived by solving (2) and (3) with respect to \(\nu_{ij} \) and \(\mu_{ij} \), respectively. Optimizing (2) with respect to \(\nu_{ij} \), we get

\[
\nu_{ij} = \left[1 + \frac{d_{ij}^2 + \frac{\alpha}{N_R} \sum_{x_r \in N_j} d_{ir}^2}{\eta_i} \right]^{-\frac{1}{m_2-1}}. \tag{7}
\]

Similarly, optimizing (3) with respect to \(\mu_{ij} \), given the constraint of (4), we get

\[
\mu_{ij} = \left[\sum_{k=1}^{c} \frac{d_{kj}^2 + \frac{\alpha}{N_R} \sum_{x_r \in N_f} d_{kr}^2}{\eta_i} \right]^{-\frac{1}{m_1-1}}. \tag{8}
\]
Combining (7) and (8), the following relation, between the probabilistic and possibilistic memberships of a pixel x_j in cluster β_i, can be established:

$$\mu_{ij} = \left[\frac{c}{\eta_k} \left(\nu_{kj} (1 - \nu_{ij}) \right) \right]^{-1} \left[\frac{\eta_i}{\eta_k} \left(\nu_{ij} (1 - \nu_{kj}) \right) \right]^{-1}.$$

(9)

Hence, it can be seen that for each pixel x_j of segment or cluster β_i, its probabilistic membership μ_{ij} is directly proportional to its possibilistic membership ν_{ij}.

C. Cluster Prototypes

The cluster prototype or centroid depends on both core and boundary regions of a cluster. The centroid of the proposed sRFCM algorithm is obtained by solving (1), (2), and (3) with respect to v_i as follows:

$$v_i = \omega v_i^L + (1 - \omega) v_i^B, \quad i = 1, \ldots, c$$

(10)

where

$$v_i^L = \frac{1}{(1 + \alpha) N_R} \sum_{x_r \in A(\beta_i)} \left(x_j + \frac{\alpha}{N_R} \sum_{x_r \in N_j} x_r \right)$$

(11)

and

$$v_i^B = \frac{1}{(1 + \alpha) N_R} \sum_{x_r \in B(\beta_i)} \left(x_j + \frac{\alpha}{N_R} \sum_{x_r \in N_j} x_r \right).$$

(12)

Hence, the cluster prototype depends on the characteristics of neighborhood pixels along with the center pixel, restricted by the parameter α. The value of ω rules the relative importance of pixels lying in core and boundary regions.

D. Computation of Thresholds

Similar to other rough-fuzzy clustering algorithms [24], [25], the proposed sRFCM algorithm partitions each cluster into two regions, namely, core and boundary regions by thresholding membership values of the pixels. Let us consider two thresholds δ_B and δ_L that represent the belongingness of the pixels in upper approximation and lower approximation of a given class, respectively. In other words, these two thresholds control the size of granules of the sRFCM algorithm. The threshold δ_L is defined as follows:

$$\delta_L = \frac{1}{n} \sum_{j=1}^{n} \left(\nu_{ij}^{(0)} - \nu_{kj}^{(0)} \right);$$

(13)

where $\nu_{ij}^{(0)}$ and $\nu_{kj}^{(0)}$ represent the highest and second highest possibilistic membership values of pixel x_j at iteration $t = 0$. The average of the differences between two initial highest membership values of each pixel in the image determines the value of δ_L. The value of δ_L should be as high as possible for a good segmentation algorithm. On the other hand, the pixels, those are not lying in the core region of any cluster, contribute to calculate the threshold δ_B:

$$\delta_B = \frac{1}{\hat{n}} \sum_{j=1}^{\hat{n}} \nu_{ij}^{(0)};$$

(14)

where \hat{n} represents the number of pixels with $(\nu_{ij}^{(0)} - \nu_{kj}^{(0)}) \leq \delta_L$ and $\nu_{ij}^{(0)}$ is the highest membership of pixel x_j.

E. Details of the Algorithm

The proposed sRFCM algorithm initially identifies c pixels as the c cluster prototypes. In order to compute the values of η_i for c clusters using (6), the possibilistic membership ν_{ij} of each pixel is calculated using (7). Next, the difference between two highest possibilistic memberships of each pixel x_j is computed. If the difference is greater than δ_L, then $x_j \notin A(\beta_i)$ and $x_j \in \overline{A}(\beta_i)$, based on the definition of rough sets. Otherwise, $x_j \in B(\beta_i)$ and $x_j \in B(\beta_k)$ if $\nu_{ij} > \delta_B$. In addition, x_j does not belong to core regions of any other clusters. Based on δ_L and δ_B, each pixel is assigned to core or boundary regions of different clusters. Next, the probabilistic memberships μ_{ij} for c clusters are computed from possibilistic memberships ν_{ij} using (9) for the pixels belonging to boundary regions of different clusters. The centroids of different clusters are then updated as per (10). The basic steps of the sRFCM algorithm proceed as follows:

1. Initialize different parameters of the algorithm, namely, m_1, m_2, ω, α, and N_R and c centroids $v_i, i = 1, \ldots, c$.
2. Compute the values of thresholds δ_L and δ_B using (13) and (14), respectively, and scale parameter η_i for cluster β_i by (6). Set iteration counter $t = 1$.
3. Calculate membership $\nu_{ij}^{(t)}$ for each pixel x_j and each cluster β_i, using (7).
4. For each pixel x_j, find out highest and second highest probabilistic memberships, $\nu_{ij}^{(t)}$ and $\nu_{kj}^{(t)}$, respectively.
5. If $(\nu_{ij}^{(t)} - \nu_{kj}^{(t)}) > \delta_L$, then $x_j \in \overline{A}(\beta_i)$.
6. Otherwise, if $\nu_{ij}^{(t)} > \delta_B$, $x_j \in B(\beta_i)$ and $x_j \in B(\beta_k)$.
7. Compute $\mu_{ij}^{(t)}$ for all pixels x_j lying in boundary regions of different clusters using $\nu_{ij}^{(t)}$ by (9).
8. Calculate the new centroids using (10).
9. Steps 3 to 8 are repeated until maximum number of iterations is reached or no more new assignments can be made.
10. Stop.

F. Significance of Spatial Constraint

The noise sensitivity of the proposed sRFCM algorithm relies on the definition of spatial constraint introduced by the third and second terms of the objective functions of (2) and (3), respectively. The determination of this spatial constraint does not require any prior knowledge about the noise. Fig. 1 shows two basic cases that describe the performance of the proposed sRFCM algorithm in presence of noise. Two 3×3 windows, marked as A and B in Fig. 1(a), are extracted from the input image to represent two different situations. The pixel intensity values for both regions A and B, the threshold values δ_L and δ_B computed using (13) and (14), respectively, and
initial centroids of two classes, namely, background β_0 and object β_1, are also reported here. Fig. 1(b)-(d) present the possibilistic membership values and class labels of the pixels belonging to both regions A and B, and the centroids of β_0 and β_1, after different iterations.

- **Case 1:** The center pixel of a local window, represented by A in Fig. 1(a), is corrupted by noise, while the other pixels within the window are homogeneous. Analyzing the examples shown in Fig. 1, it is seen that initially (Fig. 1(b)) as well as after third iteration (Fig. 1(c)) the noisy center pixel is lying in boundary region of β_1, since the difference between the possibilistic membership values of the center pixel for two classes is less than the threshold δ_L. Therefore, the class label of the center noisy pixel is -1, while that of other pixels within the window are assigned to the core region of β_1, denoted by 1. After fifth iteration, the difference between the possibilistic membership values of the noisy center pixel becomes higher than δ_L and its class label converges to the class labels of neighboring pixels, as shown in Fig. 1(d). Here, the spatial term balances the membership values of the center noisy pixel considering the information from its noise-free neighboring pixels. Thus, the influence of noise on the center pixel can be reduced by incorporating spatial constraints.

- **Case 2:** The center pixel is not a noisy pixel and some pixels within its local window may be corrupted by noise, as shown in region B of Fig. 1(a). In Fig. 1(b), it is seen that after first iteration, the noisy pixels are assigned to the core region of β_0. After third iteration, one noisy pixel is assigned to same class label as that of neighboring pixels, as shown in Fig. 1(c). After fifth iteration, the algorithm converges for region B and the corresponding class labels of the noisy as well as that of the non-noisy pixels converge to the same label as depicted in Fig. 1(d), ignoring the impact of the noisy pixels. Therefore, the spatial constraints incorporated in the objective functions of (2) and (3) suppress the influence of the
G. Convergence Criterion

A mathematical analysis is presented in this section on the convergence property of the proposed sRFCM algorithm. In accordance with (10), each cluster representative of the sRFCM method is determined from the weighted average of possibilistic core region and probabilistic or fuzzy boundary. Hence, the convergence of \(v_l \) on the convergence of \(v^L \) and \(v^B \). Both (11) and (12) can be rewritten as

\[
|A(\beta_i)||v^L_i| = \sum_{x_j \in A(\beta_i)} \nu_{ij}^{\beta^2} \left(x_j + \frac{\alpha}{N_R} \sum_{x_r \in N_j} x_r \right); \quad (15)
\]

\[
|B(\beta_i)||v^B_i| = \sum_{x_j \in B(\beta_i)} \mu_{ij}^{\beta^1} \left(x_j + \frac{\alpha}{N_R} \sum_{x_r \in N_j} x_r \right); \quad (16)
\]

where \(|A(\beta_i)| = (1 + \alpha) \sum_{x_j \in A(\beta_i)} \nu_{ij}^{\beta^2}; \quad (17) \)

and \(|B(\beta_i)| = (1 + \alpha) \sum_{x_j \in B(\beta_i)} \mu_{ij}^{\beta^1}; \quad (18) \)

represent, respectively, the cardinality of core and boundary regions of cluster \(\beta_i \). If both \(\mu_{ij} \) and \(\nu_{ij} \) are kept constant, both (15) and (16) represent a set of linear equations in terms of \(v^L \) and \(v^B \). According to the analysis reported in [24], both (11) and (12) can be viewed as Gauss-Seidel iterations for solving the set of linear equations. Since the matrix representing each equation is diagonally dominant, that is,

\[
(1 + \alpha) \sum_{x_j \in A(\beta_i)} \nu_{ij}^{\beta^2} > 0; \quad (1 + \alpha) \sum_{x_j \in B(\beta_i)} \mu_{ij}^{\beta^1} > 0; \quad (19)
\]

the convergence of the proposed sRFCM algorithm is guaranteed [45]. If (11) and (12) were applied repeatedly keeping the values of \(\mu_{ij} \) and \(\nu_{ij} \) fixed, the iteration would converge under the condition (19). In practice, (7), (8), and (10) are applied alternatively in the iterations. According to convergence theorem of fuzzy clustering derived by Bezdek [46] and the convergence analysis of rough-fuzzy clustering algorithm reported in [24], the condition of (19) is still correct. Hence, it can be concluded that as long as the condition in (19) is satisfied, the proposed algorithm converges, at least, to a local optimum solution.

H. Selection of Optimum Parameters

The parameter \(\omega \) represents the relative importance of core region with respect to the boundary region of a given cluster. So, it influences directly the overall performance of the sRFCM algorithm. Since the pixels present in core region definitely belong to that cluster, it is desirable to give them more weightage compared to the pixels lying in boundary region. However, when \(\omega \approx 1.0 \), clusters cannot see the boundary region pixels, thereby, reduces the mobility of the centroids and the clusters. In effect, a number of centroids may get stuck in local optimum. Therefore, \(0 < 1 - \omega < 1.0 \) is a good choice to have the clusters with a greater degree of freedom to move. On the other hand, the parameter \(\alpha \) affects the smoothness of segmentation results. It controls the incorporation of spatial information in the clustering algorithm. If \(\alpha = 0.0 \), it does not consider the neighborhood details at all, and the proposed sRFCM boils down to the rRFCM [25]. When the value of \(\alpha \) is very small, the sRFCM algorithm does not work well in noisy environment. On the other hand, detail information is lost for a large value of \(\alpha \). In other words, the value of \(\alpha \) has to be chosen large enough to tolerate the noise, while it has to be chosen small enough to preserve the image sharpness and details. Hence, the selection of appropriate value of \(\alpha \) is crucial in order to achieve robust segmentation.

Neighborhood Silhouette: In general, an image can be considered as a collection of non-overlapping, consistent regions, which are homogeneous with respect to some characteristics such as intensity values or textures. Hence, a cluster validity index, which includes the spatial information in computation, may be the appropriate choice for determining optimum parameter set for image segmentation. In this regard, a segmentation validity index, termed as neighborhood Silhouette, is proposed to find out the optimum values of \(\omega \) and \(\alpha \).

For computing the neighborhood Silhouette \(\theta(i) \) of a pixel or a point \(x_i \), a neighborhood \(N_i \) of \(x_i \) is considered, instead of considering all pixels of the given image. Let \(\beta_s \) be the class or segment to which the pixel \(x_i \) belongs to. If a pixel \(x_i \) belongs to a cluster to which all of its neighbors belong to, then its neighborhood Silhouette is 1 (Fig. 2(a)). On the other hand, the neighborhood Silhouette of the pixel \(x_i \) is -1 if it belongs to the cluster to which none of its neighbors belongs to (Fig. 2(b)). If some of the neighbors, but not all, have the same class label as that of the center pixel \(x_i \) (Fig. 2(c)), then two scalar values \(b(i) \) and \(a(i) \) are computed for the pixel \(x_i \) within the neighborhood \(N_i \). The term \(a(i) \) is estimated as the average of the distances of \(x_i \) and \(x_j \) \(\in N_i \) that belongs to the same class \(\beta_s \). For any other class \(\beta_s, s \neq r = 1, \ldots, c \), let \(d(x_i, \beta_s) \) be the average of the distances between the pixel \(x_i \) to all pixels of \(\beta_s \) within the given neighborhood. The term \(b(i) \) is the minimum of these computed distances \(d(x_i, \beta_s) \). In this case, the neighborhood Silhouette of \(x_i \) is defined as

\[
\Delta(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}. \quad (20)
\]

So, in brief, neighborhood Silhouette \(\theta(i) \) of \(x_i \) is given by

\[
\theta(i) = \begin{cases}
-1, & \text{if } \forall x_j \notin \beta_r \\
1, & \text{if } \forall x_j \in \beta_r \\
\Delta(i), & \text{otherwise}
\end{cases} \quad (21)
\]
where \(x_j \in N_i \) and \(\beta_r \) is the class label of center pixel \(x_i \). So, the value of neighborhood Silhouette lies between -1 and 1. The global neighborhood Silhouette is then defined as follows:

\[
\Theta = \frac{1}{c} \sum_{r=1}^{c} \frac{1}{|\beta_r|} \sum_{x_i \in \beta_r} \theta(i).
\]

(22)

The compactness of the segmented regions is ensured by the higher value of \(\Theta \), which represents the importance of segmentation algorithm. Let \(S = \{\alpha, \omega\} \) be the set of parameters, while \(S^* = \{\alpha^*, \omega^*\} \) be the set of optimal parameters. In order to obtain the values of \(\alpha^* \) and \(\omega^* \) for an input image, the proposed index \(\Theta \), that is, neighborhood Silhouette, is used. For a given image, the values of parameters \(\omega \) and \(\alpha \) are varied within a certain range. For each input image, the optimal values of these two parameters \(\alpha \) and \(\omega \) are found out by using the following relation:

\[
S^* = \arg \max_{S} \{\Theta\}.
\]

(23)

III. PERFORMANCE ANALYSIS AND DISCUSSIONS

In this section, the performance of the proposed sRFCM algorithm is extensively studied with respect to different segmentation algorithms. The algorithms compared are Otsu thresholding [3], fuzzy \(c \)-means using spatial information (FCM_S) [29], spatially constrained fuzzy \(c \)-means with mean (FCM_S1) and median (FCM_S2) filtering [36], kernelized versions of FCM_S (KFCM_S), FCM_S1 (KFCM_S1), and FCM_S2 (KFCM_S2) [36], fuzzy local information \(c \)-means (FLICM) [37], kernelized version of FLICM (KWFLICM) [31], and Gaussian distribution and hidden Markov random field (GHMRF) model [27]. Three analysis tools for MRI, namely, volBrain [47], FMRIB Software Library (FSL) version 4.1.9 [48], and statistical parameter mapping (SPM) version 8 [49], are also used for comparison. The source code of the proposed sRFCM algorithm, written in C language, is available at www.isical.ac.in/~bibl/results/srfcm/srfcm.html. To study the comparative performance analysis of different algorithms and tools, three quantitative indices, namely, Dice coefficient, sensitivity, and specificity, and two cluster validity indices, namely, Davies-Bouldin (DB) and Dunn, are used.

The performance of different algorithms is analyzed on following five image databases: (i) MIVIA HEP-2 Images Dataset: it contains twenty eight HEP-2 cell images [50]; (ii) BrainWeb (Subject): it contains twenty simulated normal brain MR volumes [51]; (iii) BrainWeb (Noise-Bias): it consists of eighteen simulated brain MR volumes corrupted with different levels of noise and bias [52]; (iv) IBSR-18: it contains eighteen real brain MR volumes and is available at Internet Brain Segmentation Repository (www.cma.mgh.harvard.edu/ibsr/); and (v) LPBA40: it consists of forty real brain MR volumes [53]. Each brain MR volume is segmented into three regions, namely, gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). Before applying any segmentation algorithm on brain MR volumes, the brain extraction tool with robust brain center estimation (version 2.1) [54] is applied to extract the brain tissues such as GM, WM, and CSF, while the intensity inhomogeneity artifact present in MR volumes is removed using N4ITK [55]. The Otsu thresholding method [3] is applied to achieve initial segmentation of Hep-2 cell images, while hard \(c \)-means algorithm is applied to estimate initial delineation of different tissue classes for brain MR volumes. The intensity value of a pixel is considered as its feature.

A. Determination of Optimum Parameters

This section presents the impact of different parameters on the performance of the proposed segmentation algorithm.

1) Optimum Values of \(\omega \) and \(\alpha \): The performance of the proposed sRFCM algorithm mainly depends on two parameters, namely, weight parameter \(\omega \) and neighborhood regularizer \(\alpha \). For each image, the optimum values of \(\omega \) and \(\alpha \) are determined using (23). The values of \(\omega \) and \(\alpha \) are varied from 0.51 to 0.99 and from 0.1 to 1.0, respectively. The size of neighborhood window \(R \) is considered as 3. Fig. 3(a)-(b) present the variation of Dice coefficient and neighborhood Silhouette \(\Theta \) with respect to \(\omega \) considering corresponding \(\alpha^* \) value and that with respect to \(\alpha \) for corresponding \(\omega^* \). Results are reported for the proposed sRFCM algorithm on two images as examples. From all the results reported in Fig. 3(a)-(b), it can be seen that the value of Dice coefficient varies according to that of the neighborhood Silhouette \(\Theta \) as the parameters \(\omega \) and \(\alpha \) increase. Also, the highest value of \(\Theta \) ensures higher value of Dice coefficient, in turn, better segmentation results.

In order to establish the correspondence between neighborhood Silhouette \(\Theta \) of (22) and the compactness of the segmented region in terms of Dice coefficient, the correlation between \(\Theta \) and Dice is computed for each image, considering

![Fig. 3. Variation of Dice coefficient and neighborhood Silhouette for different values of (a) \(\omega \) and (b) \(\alpha \); and (c) performance of the proposed algorithm with lower and higher \(\alpha \) values.](image-url)
110 possible pairs of ω and α. The mean and standard deviation of correlation coefficient are then calculated, considering all images of a given data set. The mean values of correlation are 0.998839, 0.990731, 0.907702, 0.893168, and 0.890767 for BrainWeb (Noise-Bias), BrainWeb (Subject), IBSR-18, LPBA40 and HEp-2 Cell databases, respectively, while standard deviations are 0.00696, 0.018373, 0.086022, 0.056486, and 0.087922. From the results reported here, it is seen that the mean values of correlation coefficient are high, while the standard deviations are low, irrespective of the data sets used. It, thus, establishes that the neighborhood Silhouette corresponds to the compactness of the segmented region. Hence, the proposed parameter optimization method, based on the concept of neighborhood Silhouette, is effective in determining optimal values of parameters ω and α, irrespective of data sets used.

2) Importance of Higher Weight Value: In order to find out the optimum weight ω^*, the value of ω is varied in the range of 0.51 to 0.99. To establish the importance of higher value of ω, extensive experiment is carried out on five data sets considering $\omega \in (0.00, 0.50]$, and the best Dice coefficient obtained for this range of ω is compared with that achieved using the proposed parameter optimization technique where $\omega > 0.50$. Fig. 3(c) compares the performance of the proposed sRFCM algorithm when optimal $\omega^* > 0.50$ is selected using (23) with that of the best performance in the range of 0.05 to 0.50. From all the results reported in Fig. 3(c), it is seen that the proposed sRFCM algorithm attains significantly better Dice coefficient when $\omega > 0.50$. In fact, higher weightage to the pixels belonging to core region, compared to those lying in boundary region, helps to increase the performance drastically as the pixels of core region definitely belong to a cluster.

3) Optimum Window Size for Neighborhood Silhouette: The value of neighborhood Silhouette of (22) depends on the size of neighborhood window R. The larger size of window implies more number of pixels are considered for the computation of neighborhood Silhouette. Therefore, the value of neighborhood Silhouette changes with the change in neighborhood window. In effect, the optimal set of parameters obtained using (23) and corresponding segmentation performance of the proposed sRFCM algorithm depend on the size of window. Fig. 4 presents the performance of the proposed algorithm for different values of neighborhood window size R. The value of R is varied from 3 to 9 with a gap of 2. From the results reported in Fig. 4(a), it is seen that the sRFCM yields higher Dice coefficient when the neighborhood Silhouette is computed considering window size $R = 3$, irrespective of the data sets used. This is due to the fact that each brain MR volume contains a narrow region for CSF. As the dimension of neighborhood window increases, more number of voxels from different adjacent regions, mainly from GM, are included in neighborhood window. Although the voxels of CSF region are correctly classified by the proposed sRFCM algorithm, the values of neighborhood Silhouette for those voxels become very small due to the large neighborhood window.

Fig. 4(b) depicts the execution time required to compute neighborhood Silhouette, for different values of R. From the results reported in Fig. 4(b), it can be seen that the increase in neighborhood window drastically increases the computation time for brain MR volume data sets. This is because the number of voxels ($N_R = R^3 - 1$) in neighborhood window for different values of $R = 3, 5, 7, 9$ are $N_R = 26, 124, 342, 728$, respectively, for brain MR data, while the number of pixels ($N_R = R^2 - 1$) for HEp-2 cell image data set are $N_R = 8, 24, 48, 80$, respectively. Hence, although the proposed algorithm provides comparable segmentation performance for larger window size in case of BrainWeb (Noise-Bias), BrainWeb (Subject) and LPBA40 data sets, as reported in Fig. 4(a), smaller window size is desirable as it needs lesser time, as shown in Fig. 4(b). Therefore, in the current experiment, the size of neighborhood window is considered to be 3 for the computation of neighborhood Silhouette, to achieve better segmentation accuracy with significantly lesser time.

B. Importance of Spatial Constraints

It is seen that the existing rough-fuzzy clustering algorithms yield significantly more accurate results than fuzzy clustering algorithms in the domain of image segmentation [17], [24], [26]. However, they do not consider spatial information of pixels for segmentation. In effect, they are very much sensitive to different imaging artifacts. To address the shortcoming of existing rough-fuzzy clustering, the proposed sRFCM algorithm judiciously incorporates spatial constraints into rough-fuzzy clustering framework for image segmentation. In order to establish the advantage of spatial information included in rough-fuzzy clustering algorithm for segmentation, analysis is done on several HEp-2 cell images. From the experiments performed on twenty eight HEp-2 cell images obtained from
MIVIA data set, it is seen that the sRFCM provides mean values of DB and Dunn indices as 4.148 and 0.381, respectively, while rRFCM attains the mean values 4.269 and 0.366, respectively. Also, the mean values of Dice coefficient, sensitivity, and specificity for the rRFCM are 0.842067, 0.830474, and 0.865255, respectively, while that of the sRFCM algorithm are 0.861453, 0.859821, and 0.866562, respectively. The comparative performance analysis is also done using Wilcoxon signed-rank test (one-tailed). The proposed sRFCM algorithm attains lower p-values of 3.86E-02, 1.72E-03, 2.08E-05 and 1.32E-03, respectively, with respect to the rRFCM algorithm for DB index, Dunn index, Dice coefficient and sensitivity, which are statistically significant at 95% confidence level. However, the rRFCM attains lower, but not significant, p-value with respect to the sRFCM algorithm for specificity.

The importance of the proposed sRFCM algorithm in segmentation of brain MR volumes is also extensively studied and the performance of the sRFCM is compared with that of the rRFCM algorithm for four databases. For BrainWeb (Noise-Bias) database of eighteen T1-weighted simulated brain MR volumes, the mean values of DB, Dunn, Dice coefficient, sensitivity, and specificity for the rRFCM algorithm are 0.127, 6.511, 0.886133, 0.880932, and 0.979409, respectively, while that of the sRFCM algorithm are 0.143, 7.109, 0.910208, 0.892975, and 0.981117, respectively. Also, the sRFCM achieves statistically significant p-values of 9.91E-03, 2.14E-02, 3.21E-02, and 8.81E-03, respectively, for Dunn, Dice, sensitivity, and specificity. Similarly, for BrainWeb (Subject) database of twenty simulated brain MR volumes, the mean values of DB index are 0.120 and 0.115, that of Dunn are 3.667 and 4.206, that of Dice coefficient are 0.907738 and 0.908544, that of sensitivity are 0.904775 and 0.904760, and that of specificity are 0.988387 and 0.988457, for rRFCM and sRFCM algorithms, respectively. In effect, the sRFCM attains significant p-values of 1.67E-02, 4.43E-05 and 6.02E-05 for Dunn, Dice and specificity, respectively.

For real brain MR volumes of IBSR-18 and LPBA40 databases, the sRFCM algorithm achieves the mean values of DB index as 0.174 and 0.682, that of Dunn as 7.946 and 3.648, that of Dice coefficient as 0.803851 and 0.889892, that of sensitivity as 0.833570 and 0.924129, and that of specificity as 0.983470 and 0.992042, respectively. On the other hand, the rRFCM attains the mean values of DB index as 0.347 and 0.705, that of Dunn as 4.147 and 3.607, that of Dice as 0.778547 and 0.888276, that of sensitivity as 0.813987 and 0.917320, and that of specificity as 0.982291 and 0.991254, respectively. In effect, the sRFCM algorithm achieves statistically significant lower p-values of 2.68E-04, 9.82E-05, 9.82E-05, 7.96E-04, and 9.82E-05 for DB, Dunn, Dice, sensitivity, and specificity, respectively, on IBSR-18 database with respect to the rRFCM algorithm, while that of 2.49E-07, 7.92E-04, and 5.11E-08, for Dice, sensitivity, and specificity, respectively, on LPBA40 database. The sRFCM also attains lower p-values of 0.1099 and 0.0567 for DB and Dunn indices, which are not statistically significant. From all the results corresponding to five image databases, it can be seen that the incorporation of spatial information into rough-fuzzy clustering algorithm leads to significant improvement in segmentation performance from the existing rRFCM to the proposed sRFCM algorithm.

C. Performance of Different Segmentation Algorithms

In this section, the comparative performance analysis of the sRFCM algorithm and several existing segmentation algorithms on five databases is presented. The performance analysis of different methods is studied using tables of means, standard deviations, and p-values computed through Wilcoxon signed-rank test (one-tailed) with different segmentation metrics and cluster validity indices. Tables I and II display the means and standard deviations of each of the five different metrics for all the methods, along with the p-values, computed through the sign test, with respect to the proposed method for five different data sets. The best mean values are marked as bold in these tables.

Table I also highlights the improvement of performance of the proposed algorithm from initial segmentation by Otsu method for HEp-2 MIVIA data set. Analyzing the results depicted in

Table I

<table>
<thead>
<tr>
<th>Different Algorithms</th>
<th>Davie-Boudin Index</th>
<th>Dunn Index</th>
<th>Dice Coefficient</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std Dev</td>
<td>p-value</td>
<td>Mean</td>
<td>Std Dev</td>
</tr>
<tr>
<td>Otsu</td>
<td>4.429</td>
<td>3.432</td>
<td>1.901E-6</td>
<td>0.367</td>
<td>0.150</td>
</tr>
<tr>
<td>KFCM</td>
<td>4.436</td>
<td>3.497</td>
<td>2.361E-6</td>
<td>0.369</td>
<td>0.151</td>
</tr>
<tr>
<td>sRFCM</td>
<td>4.411</td>
<td>3.457</td>
<td>2.361E-6</td>
<td>0.370</td>
<td>0.151</td>
</tr>
<tr>
<td>sRFCM</td>
<td>4.548</td>
<td>3.695</td>
<td>2.361E-6</td>
<td>0.366</td>
<td>0.149</td>
</tr>
<tr>
<td>sRFCM</td>
<td>4.485</td>
<td>3.494</td>
<td>2.361E-6</td>
<td>0.366</td>
<td>0.149</td>
</tr>
<tr>
<td>sRFCM</td>
<td>4.148</td>
<td>3.099</td>
<td>-</td>
<td>0.391</td>
<td>0.152</td>
</tr>
</tbody>
</table>

For real brain MR volumes of IBSR-18 and LPBA40 databases, the sRFCM algorithm achieves the mean values of DB index as 0.174 and 0.682, that of Dunn as 7.946 and 3.648, that of Dice coefficient as 0.803851 and 0.889892, that of sensitivity as 0.833570 and 0.924129, and that of specificity as 0.983470 and 0.992042, respectively. On the other hand, the rRFCM attains the mean values of DB index as 0.347 and 0.705, that of Dunn as 4.147 and 3.607, that of Dice as 0.778547 and 0.888276, that of sensitivity as 0.813987 and 0.917320, and that of specificity as 0.982291 and 0.991254, respectively. In effect, the sRFCM algorithm achieves statistically significant lower p-values of 2.68E-04, 9.82E-05, 9.82E-05, 7.96E-04, and 9.82E-05 for DB, Dunn, Dice, sensitivity, and specificity, respectively, on IBSR-18 database with respect to the rRFCM algorithm, while that of 2.49E-07, 7.92E-04, and 5.11E-08, for Dice, sensitivity, and specificity, respectively, on LPBA40 database. The sRFCM also attains lower p-values of 0.1099 and 0.0567 for DB and Dunn indices, which are not statistically significant. From all the results corresponding to five image databases, it can be seen that the incorporation of spatial information into rough-fuzzy clustering algorithm leads to significant improvement in segmentation performance from the existing rRFCM to the proposed sRFCM algorithm.
Table I, it can be seen that the performance of the sRFCM is increased by 13.33%, 26.22%, 6.33%, and 3.88% with respect to Dice, sensitivity, DB and Dunn indices, respectively. Tables I, II, and III also compare the performance of different segmentation algorithms with respect to three segmentation indices. All the results reported here confirm that the proposed method attains best mean Dice coefficient and performs significantly better than any other algorithm at 95% confidence level, irrespective of the data sets used (marked in bold). Only for BrainWeb (Noise-Bias) and IBRS-18 databases, the sRFCM performs better than volBrain, but not significantly (marked in italics in Table III). The proposed method achieves
significantly better results than all the existing algorithms with respect to sensitivity for HEp-2 MIVIA data set. Out of total 48 comparisons of four brain MR volume databases, the sRFCM algorithm attains significantly better results with respect to sensitivity in 32 cases and better but not significant in 6 cases compared to existing methods. On the other hand, the proposed method achieves significantly better results with respect to specificity in 42 cases and better but not significant in 4 cases for brain MR volume databases.

Finally, the qualitative comparative results are reported in Fig. 5 on some HEp-2 cell images and in Fig. 6 and 7 on some brain MR volumes for some of the methods as examples. In case of brain tissue segmentation, the proposed and some existing algorithms, namely, FCM_S, KFCM_S, FLICM, KWFLICM, are applied on bias corrected and skull stripped brain MR volumes. Other three MRI analysis tools, namely, FSL, SPM, and volBrain, are given original inputs, instead of pre-processed one, since they have their own skull stripping and bias correction mechanisms. Therefore, pre-processed volumes of column (b) of Fig. 6 and 7 serve as input for segmentation results of columns (d)-(h), whereas original brain MR volumes of column (a) act as input for the results of MRI tools presented in columns (i)-(k) of Fig. 6 and 7. The segmented images in Fig. 6 and 7 are taken from middle slices of three views, namely, axial, coronal, and sagittal, for each MR volume. The segmented images obtained using different algorithms establish the fact that the output images generated by the sRFCM algorithm is more promising than that obtained using existing segmentation methods. The best performance of the proposed method is achieved due to the fact that spatial constraint incorporated in the sRFCM balances the robustness to both added noise and outliers, and effectiveness of preserving the details for image. Moreover, the overlapping partitions are handled efficiently by the probabilistic membership function of the sRFCM, while the arbitrary shaped core region of a cluster can be identified by the possibilistic membership function of lower approximation. Also, the concept of core and boundary regions of a cluster, introduced in the sRFCM, can deal with uncertainty, vagueness, and incompleteness in segment definition. In effect, the proposed image segmentation algorithm can generate good segmented regions.

IV. CONCLUSION

The contribution of the paper lies in developing a new clustering algorithm, termed as spatially constrained rough-fuzzy c-means (sRFCM), for segmentation of medical images.
It judiciously integrates the merits of rough-fuzzy clustering and local spatial constraint of each pixel. The spatial constraint of the proposed sRFCM algorithm permits the labeling of a pixel to be persuaded by the labels of its neighboring pixels. Hence, the proposed sRFCM algorithm can avoid the problem of sensitivity to imaging artifacts of existing rough-fuzzy clustering algorithms. The spatial constraint is used to balance between the robustness to both added noise and outliers, and effectiveness of preserving the image details. Moreover, the notion of core and boundary regions of rough sets, used in the sRFCM algorithm, deals with incompleteness in cluster definition, while both possibilistic and probabilistic membership functions of fuzzy sets enable efficient handling of overlapping partitions in noisy environment. The proposed parameter optimization technique is found to be effective in determining optimum values of neighborhood regularizer and weight parameter. Finally, the effectiveness of the proposed sRFCM algorithm is demonstrated on brain MR and HEp-2 cell image segmentation, along with a comparison with other application dependent existing algorithms.

ACKNOWLEDGMENT

This publication is an outcome of the R&D work undertaken in the project under the Visvesvaraya PhD Scheme of Ministry of Electronics and Information Technology, Government of India, being implemented by Digital India Corporation.

REFERENCES

D. L. Pham and J. L. Prince, "Adaptive Fuzzy Segmentation of Magnetic

M. Gong, Y. Liang, J. Shi, W. Ma, and J. Ma, "Fuzzy C-Means Clustering

Shaswati Roy received the B.Tech degree in Information Technology from West Bengal University of Technology, India, in 2005 and M.E degree in Information Technology from Jadavpur University, India, in 2012. Currently, she is a Research Scholar in the Machine Intelligence Unit, Indian Statistical Institute, Kolkata, India. Her research interests include medical image processing, machine learning, soft computing, and so forth. She has published a few papers in international journals and conferences. She has received the prestigious INSPIRE fellowship of the Department of Science and Technology, Government of India for the years 2015-2020.

Pradipata Maji received the BSc degree in Physics, the MSc degree in Electronics Science, and the PhD degree in the area of Computer Science from Jadavpur University, India, in 1998, 2000, and 2005, respectively. Currently, he is a Professor in the Machine Intelligence Unit, Indian Statistical Institute, Kolkata, India. His research interests include pattern recognition, machine learning, computational biology and bioinformatics, medical image processing, and so forth. He has published more than 125 papers in international journals and conferences. He is a Fellow of the National Academy of Sciences, India. He has received the 2008 Microsoft Young Faculty Award from Microsoft Research Laboratory India Pvt., the 2009 Young Scientist Award from the National Academy of Sciences, India, the 2011 Young Scientist Award from the Indian National Science Academy, India, and the 2015 Young Faculty Research Fellowship from the Ministry of Electronics and Information Technology, Government of India. He has been selected as the 2009 Young Associate of the Indian Academy of Sciences, India.