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Abstract

The notes derive the salient features of optimal control theory for an infinite
horizon objective function. For concreteness, the necessary and sufficient
conditions are derived with reference to the neoclassical model of growth.
However, the ideas easily extend to other economic problems. The need for
the exercise arises from the lack of a single source which students can access
for a development of the subject from first principles.
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1 Introduction

For a little over a decade now, endogenous growth theorists have been ap-
plying the techniques of optimal control to continuous time dynamic mod-
els. These models typically assume, like their neoclassical predecessors Cass
(1965), Koopmans (1965) and Ramsey (1928), a dynastic macro household,
or a social planner, choosing a consumption (hence, saving) plan by maxi-
mizing a welfare integral over an infinite time domain. The mathematical
theory (as well as the economic interpretations) underlying optimal control
methods (as applied to neoclassical growth models of the pre-endogenous
genre) have been discussed by authors such as Arrow & Kurz (1970), Aghion
& Howitt (1998), Barro & Sala-i-Martin (1995/1999), Cass (1965), Chi-
ang (1992), Dixit (1990), Dorfman (1968), Intrilligator (1971), Kamien &
Schwartz (2000) and others. Since the same principles carry over mutatis
mutandis to the new growth models, students who wish to embark upon a
study of modern growth theory have a large and readily available literature
to fall back upon for an introduction to optimal control techniques.

1The pages that follow represent the outcome of my attempts to come to grips with
the basic ideas underlying Optimal Control Theory. Like most teachers, I learnt through
teaching and, to that extent, owe a note of thanks to all students who suffered willy-
nilly through my lectures. I am partcularly indebted, however, to Ranajoy Basu, Sayan
Datta, Kaushik Gangopadhyay, Raman Khaddaria and Shubhashis Modak Chaudhury, five
wonderful students who kept me going through a difficult phase of the learning process.
Pradip Maiti’s suggestions on certain parts of these notes helped me improve the exposition
and clinch an important argument in Appendix 1.
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The advantage, however, is weighed down by the fact that while many
of these references contain lucid presentations of the basic tenets of control
theory, none of them provide a complete treatment of the necessary and
sufficient conditions characterizing infinite horizon optimal paths for the
standard neoclassical model. To the best of our knowledge, Cass (1965) con-
tains the most satisfactory sufficiency proof for the optimality of the infinite
horizon Solow (1956) path. A comparable development of the necessary
conditions, however, is hard to come by. Arrow & Kurz (1970) and Kamien
& Schwartz (2000) provide alternative necessity proofs for the finite horizon
problem. By comparison, their discussions of the infinite horizon case are
sketchy. The same observation holds for the other references quoted above.2

A little investigation reveals on the other hand, that the full set of results
are scattered about in the literature like pieces of a jigsaw puzzle, though no
single source presents them in a comprehensible manner. Consequently, stu-
dents uninitiated to the subject often find it difficult to put these together on
their own. In this connection, matters are complicated further by a famous
counter-example due to Halkin (1974), which demonstrated that the infinite
horizon necessary condition describing the value of a co-state variable in the
limit need not constitute a straightforward generalization of its finite horizon
counterpart.

A second lacuna in the literature lies in the economic interpretation ac-
corded to the differential equation describing the evolution of the co-state
variable(s) over time when investment is assumed to be irreversible. The
general form of this equation (covering both reversible and irreversible invest-
ment) undergoes a change to account for the possibility of corner solutions.
Cass (1965), once again, contains a clear statement of this condition (for a
model without technical progress). The intuitive arguments underlying the
Cass equation, however, are not readily available in the literature. Yet, this
equation constitutes one of the main pillars of optimal control theory and it
is important to clarify its economic content.

The purpose of these notes is to present the control theoretic necessary
and sufficient conditions for the optimal path associated with the Solow

2The seminal reference on the subject is Pontryagin et al, which contains a rigorous
treatment of necessary conditions. However, the treatment there is not ideal as a first
exposure to the problem. Also, the proofs in that work are not directly motivated by
economic arguments.
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model in the presence of exogenous technical progress.3 This is done partly
by collecting proofs and explanations from existing sources and partly by
filling out the lacunas where they exist. The mathematics used to develop
the conditions is mostly rigorous, though it does not go beyond the use of
elementary Calculus. Hopefully, this will enable students to obtain a quick
grasp of control theory techniques without having to consult several refer-
ences involving varying degrees of mathematical complexity. By deliberate
choice, the treatment is restricted to the one sector Solow model. This is
mainly to ensure easy communication. While the approach should be readily
extendable to simple two sector versions of the Solow model, thereby ensur-
ing applicability to standard endogenous growth theory, a completely general
treatment would call for deeper mathematical methods.

Section 1 is a description of the economic model. Section 2 derives the
necessary conditions for the existence of an optimal path. This section draws
heavily upon Arrow & Kurz (1970) and Dorfman (1969). Section 3 modi-
fies Cass’ treatment of sufficiency to allow for technical progress. Appendix
1 proves two results, used respectively in Sections 2 and 3. The first of
these follows from a proposition in Koopmans (1965), though an indepen-
dent argument is supplied here for completeness. The second result can be
found in Koopmans (1965) as well as elsewhere. Appendix 2 discusses the
counter-example of Halkin (1974) and indicates why it is inapplicable to the
neoclassical growth model.

2 The Model

The description of the economic model relies on Arrow & Kurz (1970), David
Cass (1965, 1966), Tjalling Koopmans ((1965), Frank Ramsey (1928) and
Robert Solow (1956). The economy evolves over time through the interac-
tion of the households and firms constituting it. There is a single produced
commodity (Y ), which can be consumed or accumulated as capital (K). The
households interact with producers and engage in an intertemporal allocation
exercise. We shall abstract completely from interactions between households

3We allow here for exogenous technical change alone, but it serves to highlight the
alterations in earlier growth exercises that endogeneity will cause.
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alone or those between producers alone at any point of time. Consequently,
we will pretend that there is a single aggregative or representative house-
hold (H) and a single representative business firm (B) in the economy. The
household increases in size over time and its rate of growth is captured by
the equation

L(t) = L0e
nt, (1)

where n is the exponential growth rate of the household size over time and
L(t) is the size of H at t. In what follows, L(t) will be referred to as popu-
lation at t.

The economy being infinitely lived in principle, H too will be assumed to
have infinite life. This does not literally mean that individuals live forever.
It means rather that members of any generation, even though finitely lived,
care for their children, grandchildren and so on. In the present exercise, the
generation at t = 0 is assumed to plan for its descendants across time forever.
In other words, it decides about an optimal consumption path C(t), t ∈
[0,∞), where C(t) is the aggregate consumption enjoyed by L(t). Optimality
of the path is judged with reference to an intertemporal welfare function of
the form

U =
∫ ∞

o
u(c(t)). ent. e−ρtdt

=
∫ ∞

o
u(c(t)) e−(ρ−n)tdt, (2)

which is a weighted sum of instantaneous utilities derived from c(t), the per
capita consumption C(t)/L(t) at t. The weights reflect two facts. First, ent

shows that utilities from per capita consumption receive exponentially higher
weights with time to take account of the fact that the household size increases
at the rate n. Secondly, ρ > 0 stands for the rate of time preference of H.
Utilities further down in time are valued less than utilities enjoyed earlier
on. This leads to an exponentially decaying weight e−ρt with the passage of
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time. We shall generally refer to ρ as the discount rate. It will be assumed
all through that ρ > n. As will be evident presently, the assumption ensures
that U is well defined. The welfare function will be assumed to satisfy the
following assumptions:

Assumption u1 u′(c) > 0, u′′(c) < 0,

Assumption u2 u′(c) →∞ as c → 0 and u′(c) → 0 as c →∞,

Assumption u3 ρ > n.

In other words, utility is a strictly concave function of c, the marginal utility
is unboundedly high for small values of c, while it is as close to zero as possible
for large c. The first part of Assumption u2 rules out zero consumption at
each point of time. Assumption u3 ensures that U is well defined.

The entire stock of capital is owned by H. The services of the capital
stock are used in production. This causes a fraction of K to depreciate. The
rate of depreciation is δ per instant of time. Thus, K is partially durable. The
household H receives compensation for capital services at the rate of r(t),
the competitive rate of interest prevailing at t. It supplies labour services
also and the competitive wage rate at t is w(t). Denoting the capital stock at
t by K(t), the household faces an instantaneous constraint on consumption
and asset accumulation or investment (Z(t)) given by

C(t) + Z(t) = w(t)L(t) + r(t)K(t). (3)

In other words, H balances its expenditures and incomes at each point of
time. It cannot borrow against future to enhance current expenditure.4

Equation (3) presumes that H supplies all labour and capital inelastically
at each t. The household is supposed to be endowed with perfect foresight
about the paths of w(t) and r(t) over time. It is standard practice to refer to

4H being a macro household, the micro households constituting it may nonetheless
borrow from each other. These cancel out in the aggregate and give rise to (3).
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Z(t) as gross investment and distinguish it from net investment K̇(t). The
latter is defined as

Z(t)− δK(t) = K̇(t), (4)

Thus, (3) is rewritten as

C(t) + K̇(t) = w(t)L(t) + r(t)K(t)− δK(t). (5)

A representative firm B has access to a technology for producing Y . This
is represented by an aggregate production function

Y (t) = F (K(t), A(t)L(t)), (6)

where Y (t) stands for the flow of output at t and K(t) and L(t) for the flows
of capital and labour services entering the production process at t. Note
that the use of the same notations for capital stock and services as well as for
population size and labour services implies that the stock-flow ratios for both
factors are assumed to be constants (normalized to unity). The coefficient
A(t) of L(t) represents (Harrod-neutral) technological progress and satisfies

Assumption T Ȧ(t)/A(t) = µ > 0.

In view of Assumption T, the convergence of (2) will generally call for a
strengthening of Assumption u3.5

Henceforth, particular values attained by variables at a time point such as
t0 will be represented by ct0 , Kt0 etc. Also, unless essential for the argument,
the time index will be dropped to achieve notational simplicity. The function
F (., .) satisfies the standard neoclassical properties, viz.

5See the discussion preceding Proposition 1 in Appendix 1 for further insights.
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Assumption F1 F (0, AL) = F (K, 0) = 0 and F displays constant returns
to scale in K and AL.

Assumption F2 F1 > 0, F2 > 0, F11 < 0, F22 < 0, and F is strictly
concave .

As per normal practice, it is useful to rewrite (6) in terms of quantities per
unit of effective labour (i.e. AL). Thus, denoting Y/AL and K/AL by ŷ and
k̂ respectively and using Assumption F1, we obtain

ŷ = F (k̂, 1)) = f(k̂), f(0) = 0. (7)

Assumption F2 implies

Property f1 f is a strictly concave function with f ′(k̂) > 0.

In addition to Assumptions F1 and F2, we will also impose

Assumption f2 f ′(k̂) →∞ as k̂ → 0 and f ′(k̂) → 0 as k̂ →∞.

Assumptions u2 and f2 are referred to as Inada conditions and constitute
regularity requirements. They guarantee that the model has mathematically
meaningful solutions.

The firm is supposed to treat all prices parametrically, thus implying that
the identical firms it subsumes behave competitively in factor and product
markets. Choosing Y as the numeraire, the wage rate and the rate of interest
are equal to the marginal productivities of labour and capital. Thus,

r(t) =
∂F

∂K(t)
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= f ′(k̂(t)),

w(t) =
∂F

∂Lt

= At{f(k̂)− k̂f ′(k̂)}. (8)

Assumption F1 and equations (8) may be utilized to rewrite (5) as

C(t) + Z(t) = F (K(t), AtLt). (9)

This equation may be viewed simultaneously as the household’s budget con-
straint and the transformation frontier between C(t) and Z(t) given K(t).
Deflating both sides by AtLt, (9) reduces to

c(t)

At

+ ẑ(t) = f(k̂(t)), (10)

where ẑ(t) = Z(t)/AtLt. An alternative representation of (10) is

c(t)

At

+
˙̂
k(t) + (µ + n + δ)k̂(t) = f(k̂(t)),

or, c(t) + At
˙̂
k(t) = At{f(k̂(t))− (µ + n + δ)k̂(t)},

(11)

where
˙̂
k(t) stands for net investment per unit of effective labour and (µ +

n + δ) k̂(t) represents the minimum level of investment per unit of effective
labour, (i.e., z), that leaves k̂(t) unchanged.6

It is convenient at this stage to consider two cases depending on whether
investment is reversible or irreversible.

6Since k̂ is a constant,



Model 10

Case 1: Investment is Irreversible. In this case, installed capital can-
not be “eaten into” except through depreciation and the smallest possible
value K̇ can assume is −δK. At this corner value of net investment, gross

investment Z equals zero. This means that z = 0 and
˙̂
k = −(µ + n + δ)k̂.

Consequently, from (11), the maximum possible per capita consumption is
c = Af(k̂).

Case 2: Investment is Reversible. Reversible investment permits direct
capital consumption thus allowing K̇ < −δK and Z < 0. Since δK stands for
physical depreciation of capital, the maximum amount of the capital stock
that can be directly consumed by the household is (1 − δ)K. Hence, the
maximum sustainable net disinvestment equals K̇ = −[(1−δ)K+δK] = −K.
Consequently, Z = K̂ + δK = −(1− δ)K. Alternatively, ẑ = −(1− δ)k̂ and
˙̂
k = −(1+µ+n)k̂. The corresponding maximum possible level of per capita
consumption is c = A(f(k̂) + (1− δ)k̂). The transformation locus between c

and
˙̂
k is illustrated in Figure 1.

Figure 1 here.

˙̂
k

k̂
=

K̇

K
− (µ + n)

= 0,

or, (K̇/K) + δ = (µ + n) + δ,
or, (K̇ + δK)/K = µ + n + δ,
or, {(K̇ + δK)/(AL)} (AL)/(K) = µ + n + δ,
or,

ẑ =
Z

AL

= (µ + n + δ)
K

AL

= (µ + n + δ) k̂.

Thus, (µ + n + δ) k̂ stands for the gross investment per unit of AL required to maintain
k̂ constant.
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The optimal value of c must necessarily be interior if investment is re-
versible. If not, suppose

c = A(f(k̂) + (1− δ)k̂). (12)

holds for some t. This means that all capital gets exhausted at t and the
economy cannot produce positive output beyond t. Hence, C = 0 subsequent
to t. Given Assumption u2, however, a small decrease in consumption
at t accompanied by an increase at a later point of time must be welfare
improving. Consequently, any optimal consumption path c must satisfy the
condition

0 < c < A(f(k̂) + (1− δ)k̂), (13)

if investment is reversible.

For the case of irreversible investment, it is no longer possible to rule
out c hitting the upper bound. At the maximum possible value of c, all
output is consumed away, but this does not exhaust the capital stock. The
economy bequeaths (1−δ)K to posterity. Hence, positive production as well
as consumption is feasible at subsequent points of time. In other words, an
optimal consumption path will satisfy the condition

0 < c ≤ Af(k̂). (14)

Consider the optimum value of c(t) for reversible investment. This being
an interior point of the feasible set, a marginal reduction ∆ in k̂ raises c by
A ∆ units. (See Figure 1.) But for the wedge represented by A, it is as if
k̂ and c are not distinguishable as different economic goods. As opposed to
this, (14) shows that the optimum for the irreversible case could occur at
a point where k̂ can no longer be sacrificed to yield extra c. Consequently,
even in this one sector model, the two variables may have to be treated as
distinct economic goods. This will show up subsequently in the pricing of c
and k̂.
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The above discussion implies that the statement of the household’s opti-
misation exercise will differ between the cases of reversible and irreversible
investment. The two optimisation problems may be stated as follows:

Version 1. Optimisation under Reversible Investment.

Find {c∗(t)}∞0 to maximize (2)

subject to (10) (alternatively, (11)), (13) and k̂(0) = k̂0.

Version 2. Optimisation under Irreversible Investment.

Find {c∗(t)}∞0 to maximize (2)

subject to (10) (alternatively, (11)), (14) and k̂(0) = k̂0.

In standard terminology, c(t) is referred to as a control variable and k̂(t) as
a state variable.7

In what follows, the search for the optimal c(t)’s will be restricted to the
class of piecewise continuous functions of t. Apiecewise continuous function
is defined as follows:

Definition: The function c : R+ → R is piecewise continuous if

(a) c(·) is continuous except over a finite set of points {a1, · · · , an}.

(b) At each ai, lim c(t) exists for t ↑ ai as well as for t ↓ ai, but the two limits
are unequal.

In what follows, piecewise continuous functions c(t) satisfying (10) or (11)
will be referred to as feasible paths.

7The constraints (13) and (14) can be alternatively stated as z unrestricted and z ≥ 0.
When the problem is stated in this manner, one would normally refer to z, rather than c,
as the control variable.
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3 Necessary Conditions for Optimum

At t = 0, the entire path {c(t)}∞0 (leading to the associated path {k̂(t)}∞t>0) is
the choice variable for H. To this extent, H is engaged in a dynamic exercise.
However, this dynamic choice must be consistent with a static optimization
exercise at each instant of time. To see this, note that at any t, say t0, H has
an inherited value of k̂t0 from the past. This fixes the RHS of equation (11).
Consequently, equation (11) describes the allocation possibilities between

c(t0) and
˙̂
k(t0), given k̂t0 . An optimal allocation amounts to a static exercise

at t0.

Accordingly, we shall break up the analysis into two parts. The first part
will be concerned with static optimality conditions, properties that must
hold true for a given volume of output at t to be allocated optimally be-
tween consumption and investment. The second part will be concerned with
dynamic conditions of optimal resource allocation across time, i.e., the way
in which the optimal choice at a given point of time is linked to choices in
the future.

3.1 Static Optimisation

The overall problem being dynamic in nature, even the static optimality con-
ditions need to be derived with reference to a minimal set of dynamic consid-
erations. In this context, we shall begin by developing Bellman’s Principle
of Optimality (Bellman (1957)), a famous mathematical principle underlying
multi-stage decision problems.

3.1.1 The Principle of Optimality and the Functional Equation

Starting from any time point t0, the best possible value of welfare achievable
by H depends on k̂t0 . Notice that this is a deeper statement than might
appear at first sight. If the planning horizon of H were finite, say T , then
the best value of welfare would depend on k̂t0 as well as t0, since the residual
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time horizon shrinks with the passage of time (i.e., T − t0 falls as t0 rises).
The infinite horizon problem does not involve this complication. At any value
of t, the residual horizon continues to be infinitely long.

Let V (k̂t0) stand for the optimum welfare starting from k̂t0 . The function
is normally referred to as the value function. Consider the truncated problem

Maximize
∫ ∞

to
u(c(t)) e−(ρ−n)(t−t0) dt

subject to (11), (13) (alternatively, (11), (14))

and k̂(t0) = k̂t0 . (15)

If {c̃t}∞t0 solves this problem, then

V (k̂t0) =
∫ ∞

to
u(c̃t) e−(ρ−n)(t−t0)dt.

Bellman’s Principle of Optimaility says:

An optimal path has the property that whatever the initial conditions and
control variables over some initial period, the control variables over the re-
maining period must be optimal for the remaining problem, with the state
resulting from the early decisions considered as the initial condition.

Let {c∗t}∞0 solve Version 1 or Version 2 of our problem. Suppose, more-
over, that it gives rise to the path k̂∗t . Then, according to the Principle of
Optimality,

V (k̂∗t0) =
∫ ∞

to
u(c∗t ) e−(ρ−n)(t−t0)dt.

Proof of the Principle of Optimality: Consider a small interval 0 ≤ t ≤
h, h > 0. Denoting the truncated path {c(t)}h

0 by c0,h, it is clear that k̂h is
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a function of c0,h, given k̂0. Let k̂(h) = φ(c0,h). Then, V (k̂(h)) = V (φ(c0,h)).
Suppose then that H chooses c∗0,h over the interval [0, h], but that contrary
to the Principle of Optimality, the aggregate utility from {c∗t}∞h falls short of
V (φ(c∗0,h)). If possible, let

V (φ(c∗0,h)) =
∫ ∞

h
u(c̄t)e

−(ρ−n) (t−h) dt

>
∫ ∞

h
u(c∗t )e

−(ρ−n) (t−h) dt,

where c̄t is feasible from φ(c∗0,h) and c̄t 6= c∗t except possibly over a set of zero
measure. Define

c∗∗(t) =

 c∗t , t ∈ [0, h]

c̄t t ∈ (h,∞).

Clearly, c∗∗(t) is feasible and

∫ ∞

0
u(c∗∗(t)) e−(ρ−n)t dt >

∫ ∞

0
u(c∗t ) e−(ρ−n)t dt,

which contradicts the presumed optimality of {c∗t}∞0 .

According to the Principle of Optimality then,

V (k̂0) =
∫ h

o
u(c∗t ) e−(ρ−n)tdt + V (φ(c∗0,h))

≥
∫ h

o
u(ct) e−(ρ−n)tdt + V (φ(c0,h)), (16)

given any feasible path {c(t)}∞0 . Alternatively,
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V (k̂0) = maxc0,h
{
∫ h

o
u(c(t)) e−(ρ−n)tdt + V (φ(c0,h))}, (17)

or, more generally,

V (k̂t0) = maxct0,t0+h
{
∫ t0+h

to
u(c(t)) e−(ρ−n)(t−t0)dt + V (φ(ct0,t0+h

))}, (18)

where maxca,b
denotes maximization with respect to c(t), a ≤ t ≤ b. Equa-

tion (17) (alternatively (18)) is referred to as a functional equation. This
completes our disussion of Bellman’s Principle of Optimality.

3.1.2 Necessary Conditions for Static Optimality

In what follows, we shall proceed under

Assumption V V (k̂) is continuously differentiable.

Assumption V allows us to make some approximations concerning the RHS
of (18). First, for h small,

u(c(t)) ∼= u(c(t0)), t0 ≤ t ≤ t0 + h.

If t0 is a point of discontinuity, we choose ct0 as the right hand limit of c(t)
at t0.

8

Therefore,

8Note that t0 being a point of zero measure, replacing the optimal value of c(t0) by the
right hand limit does not affect the value of the utility integral.
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∫ t0+h

to
u(c(t)) e−(ρ−n)(t−t0)dt ∼= u(c(t0))

∫ t0+h

to
e−(ρ−n)(t−t0)dt

= u(c(t0))[−
e−(ρ−n)(t−t0)

ρ− n
]t0+h
t0

= u(c(t0))[−
e−(ρ−n)h

ρ− n
+

1

ρ− n
]

= u(c(t0))[
1

ρ− n
{1− e−(ρ−n)h}]

∼= u(c(t0))[
1

ρ− n
{1− (1− (ρ− n)h)}]

by Taylor’s approximation ,

= u(c(t0))h.

Thus, (18) can be written as

V (k̂t0)
∼= max(ct0,t0+h) {h u(c(t0)) + V (k̂(t0 + h))}, (19)

where k̂(t0 + h) results from the choice of ct0,t0+h. A necessary condition for
this optimum is

h ∂u(c(t0))

∂c(t0)
+

∂V (k̂(t0 + h))

∂c(t0)
≥ 0. (20)

The inequality is explained by the fact that under irreversible investment,
the optimum value of c(t0) might hit its upper bound given by (14). This
being a corner solution, the partial derivative may turn out to be strictly
positive.

Next, note that

∂V (k̂(t0 + h))

∂c(t0)
=

∂V (k̂(t0 + h))

∂k̂(t0 + h)
.
∂k̂(t0 + h)

∂c(t0)
.
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Linearizing again

k̂(t0 + h) ∼= k̂(t0) + h
˙̂
k(t0),

where, according to (11),

˙̂
k(t0) =

˙̂
k(t0)(c(t0))

= f(k̂(t0))− (µ + n + δ)k̂(t0)−
c(t0)

At0

.

Thus,

∂k̂(t0 + h)

∂c(t0)
∼= − h

At0

.

Denote ∂V (k̂∗t )/∂k̂(t) by q∗t . The variable q(t) stands for the maximum pos-
sible change in the social welfare from t onwards on account of a marginal
change in k̂(t). In other words, it is the marginal value or shadow price of k̂
at t along the optimal path. The assumption that V is differentiable implies
that at any given value of k̂(t), the value of q(t) is uniquely defined. Using
these facts, the optimality of {c∗t}∞t0 and the definition of q∗t , (20) reduces to

h ∂u(c∗t0)

∂c(t0)
− q∗t0+h

h

At0

=
h ∂u(c∗t0)

∂c(t0)
−

h q∗t0
At0

−
h (q∗t0+h − q∗t0)

At0

≥ 0,

or,

∂u(c∗t0)

∂c(t0)
−

q∗t0
At0

−
(q∗t0+h − q∗t0)

At0

≥ 0.
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Allowing h → 0, replacing t0 by t and using Assumption V, we see that
for {c∗t}∞0 to be optimal,

∂u(c∗t )

∂c(t)
− q∗t

At

≥ 0, with equality

if c∗t is interior , (21)

and (
∂u(c∗t )

∂c(t)
− q∗t

At

) z∗(t) = 0 (22)

must hold for all t.

3.1.3 The Maximal Principle

Instead of moving from (19) to (20) as we did in the last section, we could
have followed an alternative route. To see this, note that

V (k̂(t0 + h)) ∼= V (k̂(t0) + h
˙̂
k(t0)),

(linearizing k̂(t0 + h)) ,

∼= V (k̂(t0)) + h
˙̂
k(t0)) V ′(k̂(t0), (23)

(linearizing again) .

Thus, (19) reduces to

V (k̂t0)
∼= max(ct0,t0+h) {h (u(c(t0)) + V ′(k̂(t0))

˙̂
k(t0))}+ V (k̂(t0)). (24)

Cancelling out V (k̂t0) from both sides,
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h max(ct0,t0+h) {(u(c(t0)) + V ′(k̂(t0))
˙̂
k(t0))} ∼= 0,

which, despite its trivial nature, seems to indicate a relationship between
the optimisation result discussed in the last section and the maximum of

the function {(u(c(t0)) + V ′(k̂(t0))
˙̂
k(t0))} at t.9 Accordingly, we proceed to

construct an auxiliary function, usually referred to as the Hamiltonian, as
follows:

H(c(t), k̂(t), q(t)) = u(c(t)) + q(t)
˙̂
k(t), (25)

where the arguments of H follow from (11).

Recalling that q(t) stands for the shadow price of a unit of k̂(t), the
HamiltonianH can be interpreted approximately as the value in utils imputed
to per capita net national product at t.10 For given values of q(t) and k̂(t), we

may treat H as a static welfare function at t, defined over c(t) and
˙̂
k(t) alone.

To establish the shape of a level curve generated byH in the (c(t),
˙̂
k(t)) plane,

differentiate totally to get

d c(t)

d
˙̂
k(t)

= − q(t)

u′(c(t))
< 0

and

d2 c(t)

d
˙̂
k(t)2

= q(t)
1

u′(c(t))2
u′′(c(t))

d c(t)

d
˙̂
k(t)

> 0.

9Note that h being small, h {(u(c(t0)) + V ′(k̂(t0))
˙̂
k(t0))} ∼= 0 whatever may be the

value of max(ct0,t0+h) {(u(c(t0)) + V ′(k̂(t0))
˙̂
k(t0))}.

10The qualification “approximate” is needed since k̂ is investment per unit of effective
labour AL, rather than per capita investment.
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Thus, the level curves corresponding to H are downward falling and strictly
convex to the origin.

Given these preliminaries, we can restate (21) in terms of the Hamiltonian.
Consider first the reversible investment case. We shall argue that in this case,
c∗t maximizes H subject to (11), k̂(t) = k̂∗t and q(t) = q∗t for each t. Moreover,
the FOC characterising such a solution is identically the same as the equality
version of (21). To see this, use (11) to get

˙̂
k(t) = {f(k̂∗(t))− (µ + n + δ)k̂∗(t)} − c(t)

At

.

Substituting in (25), H reduces to

H(c(t), k̂∗(t), q∗(t)) = u(c(t)) + q∗(t)[{f(k̂∗(t))− (µ + n + δ)k̂∗(t)} − c(t)

At

],

which is a function of c(t) alone. Differentiating H with respect to c(t), we
obtain ∂u(c(t))/∂c(t) − q∗(t)/At. By assumption, ∃ a value of c∗t satisfying
(11) and k̂(t) = k̂∗t such that

∂u(c∗t )

∂c(t)
− q∗t

At

= 0.

The shape of the level curves of H tell us further that c∗t is an unique solution
to the problem

Maximize H(c(t), k̂∗t , q
∗
t ) subject to (11). (26)

Next, consider a corner solution corresponding to irreversible investment.
To relate it to the Hamiltonian, let us reformulate the relevant constraints
in the Kuhn-Tucker form. Rewrite (11) as the inequality constraint
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At{f(k̂(t))− (µ + n + δ)k̂(t)} − c(t)− At
˙̂
k(t) ≥ 0 (27)

Similarly, note that

(µ + n + δ)k̂(t) +
˙̂
k(t) ≥ 0 (28)

must hold. The inequality (21) may now be viewed as the FOC satisfying a
corner solution to the problem

Maximize H(c(t), k̂∗(t), q∗t ) subject to (27) and (28) . (29)

Figure 1 shows that at the corner solution, both constraints are binding. The
gradients to these constraints at the optimum point are (−1,−At) and (0, 1)
respectively and the gradient to the objective function is (u′(c∗t ), q

∗
t ). As per

the Kuhn-Tucker conditions then, ∃ nonnegative Lagrange multipliers λ1 and
λ2 such that

(−u′(c∗t ),−q∗t ) = λ1 (−1,−At) + λ2 (0, 1).

Moreover, it is easy to read from Figure 1 that (21) must hold as a strict
inequality.

Collecting the observations of this section, it follows that an optimal
path {c∗t , k̂∗t }∞0 has associated with it a path of {q̂∗(t)}∞0 such that the cor-
responding imputed value of per capita net national product is maximized
with respect to c(t) at each point of time. In view of this implication, (26)
(alternatively (29)) is often referred to as the Maximal Principle.
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3.2 Dynamic Optimality

The discussion of static optimality was concerned with the allocation of out-
put between consumption and investment at any given point of time. This led
to a relationship between the marginal utility from per capita consumption
and the shadow price of k̂ at each t. As opposed to this, dynamic optimality
links the shadow price of k̂ at any t with the shadow prices at subsequent
t’s. As we shall see, finding this link is tantamount to stating a differential
equation describing the evolution of q∗t over time. In order to describe that
equation, we shall use the principle that a small perturbation around the op-
timal path {c∗t , k̂∗t }∞0 leaves the aggregate utility of the household unchanged.
In particular, we shall consider the following perturbation:

(a) at t0, consumption is lowered and investment increased marginally so as
to raise k̂∗t0 to k̂′t0 , where k̂′t0 − k̂∗t0 = ∆;

(b) k̂′s = k̂∗s + ∆ ∀ s > t0, or, as shown in Figure 2, k̂′s is merely a parallel
upward shift in k̂∗(s) for s > t0;

(c) ∀ s > t0, the extra per capita output realized by the higher k̂′s after
maintaining the additional ∆ for all time is consumed away.11

Figure 2 here.

The definition of q(·) implies that the price of a unit of k̂(t0) in units of
c(t0) is q∗t0/u

′(c∗t0) along the optimal path. Thus, the sacrifice of c(t0) required

to raise k̂∗t0 by ∆ equals (q∗t0/u
′(c∗t0)) ∆. This entails a loss of utility equal to

u′(c∗(t0))×∆ (q∗t0/u
′(c∗t0) = ∆ q∗t0 .

Let us now compute the extra utility provided by the new path ∀ s > t0.
The extra per capita output brought forth by ∆ at s equals Asf

′(k̂∗s) ∆. This
extra output is partly invested to maintain k̂(s) at the higher level. In units
of z, the required investment is (µ + n + δ) ∆, which equals (q∗s/u

′(c∗s)) (µ +
n + δ) ∆ in units of c. The extra per capita consumption permitted by the
extra output after subtracting the investment is Asf

′(k̂∗s) ∆−(q∗s/u
′(c∗s)) (µ+

11The construction of the perturbed path follows Solow (2000).
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n + δ) ∆. Multiplying out by u′(c∗s), the extra utility from the extra con-
sumption at each s is given by [As u′(c∗s) f ′(k̂(s)) − q∗s (µ + n + δ)] ∆.
Thus, the total discounted gain in utility at t0 from the perturbation equals
∆

∫∞
t0

e−(ρ−n)(s−t0){Asu
′(c∗s)f

′(k̂∗s)− q∗s (µ + n + δ)}ds.

Optimality, as noted, requires that the gain and the loss be equal. Hence,

∆ q∗t0 = ∆
∫ ∞

t0
e−(ρ−n)(s−t0){Asu

′(c∗s) f ′(k̂∗s)− q∗s (µ + n + δ)}ds,

or,

q∗t0 =
∫ ∞

t0
e−(ρ−n)(s−t0){Asu

′(c∗s) f ′(k̂∗s)− q∗s (µ + n + δ)}ds. (30)

Replacing t0 by t for notational ease, consistency between (21) and (30)
implies

q∗t ≥
∫ ∞

t
e−(ρ−n)(s−t)q∗s {f ′(k̂∗s)− (µ + n + δ)}ds. (31)

For q∗t to be well-defined, the integral on the RHS must exist for each t.
We shall demonstrate in Appendix 1 (Proposition 1) that the optimality of
{c∗t , k̂∗t }∞0 implies f ′(k̂∗s)− (µ + n + δ) is bounded strictly away from zero for
s sufficiently large.12 Anticipating this result, the integral can exist ∀ t only
if

e−(ρ−n)tq(t)∗ → 0 as t →∞. (32)

Equation (32) is called the transversality condition and constitutes a re-
striction on an optimal path. Intuitively, (32) implies that efficient paths

12The result follows directly from Proposition (J) of Koopmans (1965). For the sake of
completeness, however, Appendix 1 constructs an independent proof.
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view capital stocks far out in the future to be increasingly useless relative to
present stocks.13

The balance between cost and benefits captured by equation (30) can
be expressed in another manner. This is done by differentiating14 (30) with
respect to t to get

q̇∗t = −{Atu
′(c∗t )f

′(k̂∗t )− q∗t (µ + n + δ)}

+(ρ− n)
∫ ∞

t
e−(ρ−n)(s−t){Asu

′(c∗s)f
′(k̂∗s)

−q∗s(µ + n + δ)}ds.

Using (30), the last equation reduces to

q̇∗t = −{Atu
′(c∗t )f

′(k̂∗t )− q∗t (µ + n + δ)}+ (ρ− n)q∗t . (33)

In order to interpret (33), consider a different scenario where p is the
money price of a unit of the commodity that acts both as a consumption and a

13It is worth noting here that the transversality condition follows from the fact that
f ′(k̂∗

s)− (µ + n + δ) is bounded strictly away from zero, rather than the other way round.
Certain sources liken the transversality condition to a no-Ponzi game restriction. The latter
is a vacuous restriction for the present model, since it assumes a single macro household
which can neither be a net borrower nor a net lender within the household sector. See
footnote 3 above. In any case, as we have demonstrated, optimality implies this condition.
It is not an exogenous stipulation on the model. As we shall see in Appendix 2, Halkin’s
counter-example to the necessity of the transversality condition depends crucially on the
fact that the objective function of his problem assigns a disproportionately high weight
on capital in the distant future.

14The formula for differentiating a definite integral of the form

K(x) =
∫ b(x)

a

F (t, x)dt

is

dK(x)
dx

=
∫ b(x)

a

Fx(t, x)dt + F (b(x), x)b′(x).

See Chiang (1992), (2.11), p.31.
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capital good.15 Suppose further that there exists, alongside the capital good,
an alternative monetary asset, a long term bond, yielding a nominal rate of
interest i(t) for each t. An infinitely lived agent is engaged in evaluating a
chosen path of capital accumulation {k(t)}∞0 . When p units of money are
invested in a unit of the capital good at time t, the marginal product is
f ′(k(s)) ∀ s ≥ t, assuming as before that the agent maintains the extra
unit of capital for all s ≥ t and consumes any residual output brought forth
by the extra capital. Then, the agent’s return from maintaining an extra
unit of k forever from s onwards is f ′(k(s)) ∀ s ≥ t. In nominal terms,
the return equals p(s)f ′(k(s)) at each s. For the agent to be indifferent
between investing in the physical capital and investing in the bond, the two
investments must yield the same rate of return per instant of time. The rate
of return from the physical capital investment, r(s), is given by

p(t) =
∫ ∞

t
p(s)f ′(k(s))e−

∫ s

t
r(x)dxds.

If the two rates of return are equal, then r(s) = i(s) ∀ s. Hence,

p(t) =
∫ ∞

t
p(s)f ′(k(s))e−

∫ s

t
i(x)dxds. (34)

Differentiation of (34) with respect to t gives

ṗ(t) = −p(t)f ′(k(t)) + i(t)p(t),

or,

p(t)f ′(k(t)) + ṗ(t) = i(t)p(t). (35)

The first term on the LHS of (35) stands for the value of the instantaneous
marginal product of investment in k in nominal terms, while the second

15This interpretation is based on Solow (1956). Note that under reversible investment,
(33) reduces to the simpler condition q̇∗t = −q∗t {f ′(k̂∗

t )− (µ + ρ + δ)}.
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term represents capital gain (or loss) on account of price change. The LHS
then gives the net instantaneous nominal return from investing in k. The
RHS, on the other hand, is the nominal return at t from holding the bond.
The equality implies that the agent is indifferent between the two ways of
investing.16

The logic underlying (35) may be applied to (33), which we rewrite as

{Atu
′(c∗t )f

′(k̂∗t )− q∗t (µ + n + δ)}+ q̇∗t = (ρ− n) q∗t . (36)

The LHS now gives the instantaneous net return in utils of a unit of invest-
ment in k̂(t), where q̇∗t is the capital gain or loss measured in utils. On the
RHS, the term ρ − n is the rate at which utils ought to grow in the house-
hold’s judgement. It is the counterpart of i(t) in (35). This rate applied
to the shadow price of capital yields the instantaneous return that H finds
acceptable, the imputed opportunity cost of investment in physical capital.
Hence, (36) says that the rate of return from investment along the optimal
path equals the household’s minimum acceptable return. When (33) or (36)
holds therefore, H has no incentive to divert away from the chosen path of
asset accumulation.

The necessary conditions for static and dynamic optimality are then cap-
tured by (11), (22), (36) and (32). For ease of reference, we renumber and
rewrite these below as

Proposition 1 If {c∗t , k̂∗t }∞0 is optimal, then there exists a path of co-state
variables {q∗t }∞0 such that

u′(c∗t ) ≥ q∗t
At

, with equality for an interior c∗t ; (37)

˙̂
k
∗

t = f(k̂∗t )−
c∗t
At

− (µ + n + δ)k̂∗t ; (38)

16A more common way of writing (35) is f ′(k(t)) + ṗ(t)/p(t) = i(t), commonly called
the Fisher equation, after Irving Fisher.
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q̇∗t = −{Atu
′(c∗t )f

′(k̂∗t )− q∗t (µ + n + δ)}

+(ρ− n)q∗t

= −Atu
′(c∗t )f

′(k̂∗t ) + (µ + ρ + δ)q∗t ; (39)

and e−(ρ−n)t q∗t → 0 as t →∞. (40)

3.2.1 The Hamiltonian Function Again

The link between (37) of Proposition 1 and the Hamiltonian was already
indicated by (26) and (29). The remaining parts of this proposition can
also be stated in terms of the same Hamiltonian function. Equation (38) is
derived by maximizing H with respect to q(t):

∂H(c∗t , k̂
∗
t , q(t))

∂q(t))
=

˙̂
k
∗
(t). (41)

We may also claim that

q̇∗t =
d(

∫∞
t (∂H(c∗t , k̂

∗
t , q

∗
t )/∂k̂(s)) e−(ρ−n)(s−t)ds)

dt

= −Atu
′(c∗t )f

′(k̂∗t ) + (µ + ρ + δ)q∗t . (42)

establishes the connection between H and (39). The derivation of equation
(42) is based on the perturbation discussed in subsection 3.2. Property (b)

of the comparison path k̂′t implies that d
˙̂

k∗(s)/dk̂(s) = 0 ∀ s > t. Using (11)
and (14),

H = u(Af(k̂))− q(µ + n + δ)k̂, when c has a corner solution ,

= u(A{f(k̂)− (µ + n + δ)k̂ − ˙̂
k}) + q

˙̂
k, otherwise.
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Differentiating H with respect to k̂, holding
˙̂
k(t) fixed, and utilizing (37), we

see that

∂H(c∗s, k̂
∗
s , q

∗
s)

∂k̂(s)
= u′(c∗s) As f ′(k̂∗s)− q∗s(µ + n + δ), (43)

irrespective of whether c∗s has an interior or boundary value. Thus, referring
back to Section 3.2, the derivative in (43) stands for the increment in util-
ity at each point of time along the perturbed path {k̂′t}. Using (30) now,
q∗t =

∫∞
t (∂H/∂k̂(s)) e−(ρ−n)(s−t)ds. Consequently, (42) is a restatement of

(33) or (36). Let us collect the necessary conditions stated in terms of the
Hamiltonian function as17

Proposition 2 Suppose {c∗t , k̂∗t }∞0 solves Version 1 or Version 2 of the prob-
lem. Then, there exists a path of co-state variables q∗t such that (26) (alter-
natively (29)), (41), (42) and (40) are satisfied.

4 Sufficient Conditions for an Optimum

We proceed now to prove that under Assumptions u1 and f1, any path
{c∗t , k̂∗t , q∗t }∞0 satisfying (37)-(40) constitutes a unique solution to the prob-
lems stated as Version 1 and Version 2 above. Assume then that {c(t), k̂(t)}∞0
ia any feasible path. Then, equation (10) gives

A(f(k̂)− ẑ)− c = 0, (44)

17The conditions resemble standard representations of the first three necessary condi-
tions, except for (42). Equation (42) is borrowed from Cass (1965, 1966). The advantage
of choosing the form (42) is that it makes direct reference to the economic interpreta-
tion of a co-state variable. Moreover, it uses a single differential equation to describe the
evolution of the co-state variable for both reversible and irreversible investment.
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where the time index t has been dropped for convenience. In what follows,
we shall also use the fact that u1 and f1 imply

u(c∗)− u(c)− u′(c∗)(c∗ − c) > 0

f(k̂∗)− f(k̂)− f ′(k̂∗)(k̂∗ − k̂) > 0. (45)

Our claim is established if we can show that

D =
∫ ∞

0
{u(c∗)− u(c)} e−(ρ−n)tdt

> 0.

By adding and subtracting terms, we may use (44) and the identity ẑ =
˙̂
k + (µ + n + δ)k̂ to write

D =
∫ ∞

0
[{u(c∗)− u(c)}+ u′(c∗){(A(f(k̂∗)− ẑ∗)− c∗)− (A(f(k̂)− ẑ)− c)}

q∗{(ẑ∗ − λ k̂∗ − ˙̂
k
∗
)− ((ẑ − λ k̂ − ˙̂

k)}] e−(ρ−n)t dt,

where λ = µ + n + δ. Collecting terms,

D =
∫ ∞

0
[{u(c∗)− u(c)− u′(c∗)(c∗ − c)}+ {q∗(ẑ∗ − ẑ)

−Au′(c∗)(ẑ∗ − ẑ)} − q∗{λ(k̂∗ − k̂) + (
˙̂
k
∗
− ˙̂

k)}

+Au′(c∗){f(k̂∗)− f(k̂)}] e−(ρ−n)tdt, (46)



Sufficient Conditions 31

Equation (46) may be reduced further by integrating
∫∞
0 q∗(

˙̂
k
∗
− ˙̂

k)e−(ρ−n)tdt
by parts. Thus,

∫ ∞

0
q∗(

˙̂
k
∗
− ˙̂

k)e−(ρ−n)tdt = e−(ρ−n)tq∗(k̂∗ − k̂) |∞0

−
∫ ∞

0
(k̂∗ − k̂){q̇∗e−(ρ−n)t − (ρ− n)q∗e−(ρ−n)t}dt.

We shall demonstrate in Appendix 2 that any feasible path {k̂} is bounded
above. Assuming this result for the time being and using (32), the last
equation reduces to

∫ ∞

0
q∗(

˙̂
k
∗
− ˙̂

k)e−(ρ−n)tdt = −
∫ ∞

0
(k̂∗ − k̂){q̇∗e−(ρ−n)t − (ρ− n)q∗e−(ρ−n)t}dt.

(47)

Plugging (47) into (46), we get

D =
∫ ∞

0
[{u(c∗)− u(c)− u′(c∗)(c∗ − c)}+ {q∗ − Au′(c∗)}(ẑ∗ − ẑ)

−q∗λ(k̂∗ − k̂) + (q̇∗ − (ρ− n)q∗)(k̂∗ − k̂)

+Au′(c∗){f(k̂∗)− f(k̂)}] e−(ρ−n)tdt

=
∫ ∞

0
[{u(c∗)− u(c)− u′(c∗)(c∗ − c)}+ {q∗ − Au′(c∗)}(ẑ∗ − ẑ)

+(k̂∗ − k̂){q̇∗ − (ρ + λ− n)q∗ + Au′(c∗)f ′(k̂∗)}

+Au′(c∗){f(k̂∗)− f(k̂)− f ′(k̂∗)(k̂∗ − k̂)}] e−(ρ−n)t, (48)

adding and subtracting Au′(c∗)f ′(k̂∗)(k̂∗− k̂). Note that (q∗−Au′(c∗))ẑ = 0
according to (22). Further, (q∗ − Au′(c∗))ẑ = 0 for reversible investment.
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In case of irreversible investment, q∗ − Au′(c∗) ≤ 0 and ẑ ≥ 0. Hence,
(q∗−Au′(c∗))(ẑ∗− ẑ) = 0 in all cases. Appealing to this fact along with (45),
the definition of λ and (39), equation (48) implies

D >
∫ ∞

0
[(k̂∗ − k̂){q̇∗ − (ρ + λ− n)q∗

+Au′(c∗)f ′(k̂∗)}] e−(ρ−n)t

=
∫ ∞

0
[(k̂∗ − k̂){q̇∗ − (ρ + δ + µ)q∗

+Au′(c∗)f ′(k̂∗)}] e−(ρ−n)t

=
∫ ∞

0
(k̂∗ − k̂){q̇∗ − q̇∗}

= 0.

This establishes that {c∗t , k̂∗t }∞0 is a unique optimum path. We may note in
passing that the inequality in (46) will be weak if either u or f is weakly
concave. Thus, we have proved the following result18:

Proposition 3 The conditions enumerated in Proposition 2, along with the
strict concavity of u and f , are sufficient for the existence of a unique solution
to Version 1 or Version 2 of the problem.

Appendix 1

A steady state path of capital accumulation is defined to be one along which
Y/AL, k̂ and ĉ = c/A are constants. It follows from (11) that along any
steady state path

18Mangasarian (1966) proved the corresponding result for the finite horizon problem.
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ĉ = f(k̂)− λk̂, (A.1)

where λ = µ + n + δ as before. The value of k̂ maximizing ĉ in steady state
is referred to as the Golden Rule (GR) value of the effective capital-labour
ratio. It is the solution k̂∗ to the equation

f ′(k̂) = λ. (A.2)

The corresponding value of ĉ satisfying (A.1) is denoted by ĉ∗. The per capita
consumption corresponding to ĉ∗ is

c∗t = At ĉ∗ = At (f(k̂∗)− λk̂∗)

The path of c∗t will be referred to as the GR path of per capita consump-
tion. Given any steady state pair, (ĉ, k̂) 6= (ĉ∗, k̂∗), it follows from definition
that c∗t > c(t) ∀ t. The welfare associated with any steady state path is∫∞
0 u(At ĉ) e−(ρ−n)tdt. As already noted in connection with Assumption T

in Section 2, , the integral may not exist unless the assumptions on the model
are strengthened further. For example, we may assume that the instanta-
neous utility function has the form u(c) = (c1−θ − 1)/(1− θ), θ > 0. Such a
utility function has a constant elasticity of marginal utility from consumption
(= θ). Alternatively, it admits a constant elasticity of substitution between
consumption at different points of time. When u has this form, convergence
of

∫∞
0 u(At ĉ(t)) e−(ρ−n)tdt is guaranteed if ρ− n > (1− θ) µ.19 We are now

ready to prove the following

Proposition A.1 For any optimal path {c∗t , k̂∗t }∞0 , ∃ a t0 such that
f ′(k̂∗t ) − λ is bounded strictly away from zero ∀ t > t0. In other words,

19This condition turns out to be problematic for endogenous growth theory, since µ is
not exogenously given. It is frequently encountered in the literature, however. See, for
example, Barro (1990). Dasgupta (2001) discusses further details.
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the optimal path of capital accumulation stays away from the GR in the long
run.20

Proof: The result will be derived in two steps. The first will demonstrate
that the GR per capita consumption path {Atĉ

∗} associated with indefinite
maintenance of k̂∗ is a suboptimal policy. The second step will then show
that a path for which f ′(k̂∗t ) → λ is suboptimal.

Step 1.

Equation (A.1) implies that along the GR path

ĉ∗ + λk̂∗ = f(k̂∗), (A.3)

As an alternative to the path {Atĉ
∗, k̂∗}, consider a path which raises per

capita consumption at t = 0 above A0 ĉ∗ by reducing k̂∗ to k̂′ = k̂∗ −∆. It
is possible to achieve this by reducing ẑ below λ k̂∗.21 Thus, we have

f(k̂∗) = ĉ∗ + λk̂′ + λ(k̂∗ − k̂′)

= ĉ∗ + λ∆ + λk̂′.

Thus, the change in ĉ∗ is λ∆ and the rise in per capita consumption at t = 0
is A0 λ ∆.

The alternative path is constructed to maintain k̂ at this constant value
k̂′ ∀ t > 0. Per capita consumption for all t > 0 is Atĉ

′ along the alternative

20Proposition (J) in Koopmans (1965) proves the stronger statement that f ′(k∗(t)) →
(µ + ρ + δ). Since, ρ > n, Koopmans’ result implies ours. The control theory methods
developed here can be used to prove Koopmans’ result also in a straightforward manner.
We shall not undertake that exercise here and stay satisfied with the weaker statement,
given that our objective is to establish the transversality condition (40).

21One may consume part of the capital also in the reversible investment case, but we
do not follow up this possibility. The proof we construct instead works for both reversible
as well as irreversible investment.
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path, where (ĉ′, k̂′) solves (A.1). Linearizing around A0ĉ
∗, the gain in utility

at t = 0 from the change is

G(0) = u(A0ĉ
∗ + A0 λ ∆)− u(A0ĉ

∗)

∼= u(A0ĉ
∗) + A0 λ ∆ u′(A0ĉ

∗)− u(A0ĉ
∗)

= A0 λ ∆ u′(A0ĉ
∗). (A.4)

Denote u′(A0ĉ
∗) by u′∗.

We proceed now to compare the initial gain A0 λ ∆ u′∗ with subsequent
losses. The loss in utility from the change at each t > 0 is

L(t) = u(Atĉ
∗)− u(Atĉ

′)

= u(Atĉ
∗)− u(At(f(k̂′)− λk̂′)).

Linearizing around k̂∗,

L(t) ∼= u(Atĉ
∗)− u[At(f(k̂∗)−∆f ′(k̂∗) +

∆2

2
f ′′(k̂∗)

−λk̂∗ + λ∆)]

= u(Atĉ
∗)− u[At((f(k̂∗)− λk̂∗)−∆(f ′(k̂∗)

−λ) +
∆2

2
f ′′(k̂∗))]

= u(Atĉ
∗)− u(At(ĉ

∗ +
∆2

2
f ′′(k̂∗))), using (A.2),

∼= u(Atĉ
∗)− (u(Atĉ

∗) +
∆2

2
Atf

′′(k̂∗)u′(Atĉ
∗)),
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( linearizing around Atĉ
∗),

= −∆2

2
Atf

′′∗u′(Atĉ
∗), (A.5)

where f ′′∗ = f ′′(k̂∗). The discounted stream of losses incurred during (0,∞)
is

∫ ∞

0
L(t) e−(ρ−n)tdt =

∆2

2

∫ ∞

0
(−f ′′∗At u′(At ĉ∗) e−(ρ−n)tdt

> 0, (A.6)

since f ′′ < 0 by Assumption f1. The net change in welfare to the household
from the perturbation is

ω = G(0)−
∫ ∞

0
L(t) e−(ρ−n)tdt

= A0 λ ∆ u′∗ − (∆2/2)
∫ ∞

0
(−f ′′∗At u′(At ĉ∗)e−(ρ−n)tdt.

Let

ξ∗ =
∫ ∞

0
(−f ′′∗Atu

′(At ĉ∗)e−(ρ−n)tdt,

so that

ω = A0 λ ∆u′∗ − (∆2/2) ξ∗

= ∆ ξ∗(A0 λ u′∗/ξ∗ −∆/2).
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Since A0, λ, u′∗ and ξ∗ are fixed, ∃ an ε such that ∆ < ε ⇒ ω > 0. So long as
the reduction in k̂ falls short of ε, the perturbation from the path {At ĉ∗, k̂∗}
constructed above is welfare improving.

Step 2.

Suppose now that the proposition is false. Then, ∃ an optimal path
{ĉ∗t , k̂∗t } such that |ĉ∗t − ĉ∗| and |k̂∗t − k̂∗| are arbitrarily small for t large
enough. Consider the following perturbation. At a large enough t0, disinvest
down to k̂′ (defined in Step 1) and maintain {ĉ′, k̂′} then onwards. The extra
consumption generated is ∆t0 , where |∆t0 − At0 λ ∆| is arbitrarily small for
t0 large enough (given the definition of ∆ in Step 1).

The per capita consumption at t0 changes to At0 ĉ
∗
t0

+ ∆t0 and the gain
in utility from the increased consumption is u(At0 ĉ

∗
t0

+ ∆t0)− u(At0 ĉ
∗
t0
) = ν

(say). For large enough t0, the value of ν ∼= (u(At0 ĉ
∗ + At0 λ ∆)− u(At0 ĉ

∗).
Thus, using Step 1 again, we may assume ν ∼= At0λ ∆u′(At0 ĉ∗).

Since k̂∗t → k̂∗, it is possible to assume wlog that u(c∗t )−u(Atĉ
′) > 0 ∀ t >

t0. Thus, utility falls by u(c∗t )−u(Atĉ
′) at each t > t0. The discounted present

value of the stream of losses is
∫∞
t0

(u(c∗t ) − u(Atĉ
′))e−(ρ−n)(t−t0)dt. We have,

by definition GR,

∫∞
t0

(u(Atĉ
∗)− u(Atĉ

′)) e−(ρ−n)(t−t0)dt

>
∫∞
t0

(u(c∗t )− u(Atĉ
′))e−(ρ−n)(t−t0)dt,

or,

−
∫∞
t0

(u(Atĉ
∗)− u(Atĉ

′)) e−(ρ−n)(t−t0)dt

< −
∫∞
t0

(u(c∗t )− u(Atĉ
′))e−(ρ−n)(t−t0)dt,
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or,

−(∆2/2) ξ∗t0 < −
∫ ∞

t0
(u(c∗t )− u(Atĉ

′)) e−(ρ−n)(t−t0)dt,

where ξ∗t0 corresponds to ξ∗ of Step 1 with due alteration of details. Thus,
the (Gain - Loss) is approximately equal to

At0 λ ∆ u′(At0 ĉ
∗)−

∫∞
t0

(u(c∗t )− u(Atĉ
′)) e−(ρ−n)(t−t0)dt

> At0 λ ∆ u′(At0 ĉ
∗)− (∆2/2) ξ∗t0 > 0

for an appropriately small value of ∆.

This completes the proof.

Proposition A.2 Any feasible path k̂(t) satisfying (11) is bounded above.

Proof: The maximum value of k̂(t) possible at each t is found by equating
c/A to zero for all t. This may be referred to as the path of pure capital

accumulation. Denote the path of pure capital accumulation by
¯̂
k(t). It

satisfies the equation

˙̂̄
k(t) = f(

¯̂
k(t))− λ

¯̂
k(t).

By virtue of Assumption f2, ∃ a
¯̂
k such that k̂(t) >

¯̂
k ⇒ ˙̂̄

k(t) < 0. Thus,

max {k̂(0),
¯̂
k} is the claimed upper bound on k̂(t).
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Appendix 2

Halkin’s Example.

This section discusses a famous example due to Halkin (1974) which con-
structs an infinite horizon problem for which the transversality condition is
not a necessary characterization of optimality.

Before stating the details of the example, let us go back to (31) and
analyse the reason why it leads to (32). The inequality (31) is a relationship
between the shadow price of investment q∗t and all subsequent shadow prices
over infinite time. Note that, given the objective function and the technology,
(32) holds because optimality imposes nontrivial restrictions on the behaviour
of the capital accumulation path for all t > t0. (See Proposition 1 above.)
Halkin, on the other hand, constructs an objective function which leaves the
path of accumulation unrestricted.

To get a feel for Halkin’s example, consider an agent engaged in wealth
accumulation. Her lifetime utility depends on the difference between the
terminal (i.e. limiting) value of her wealth and the initial wealth she owns.
Suppose that the maximum possible value of the terminal wealth is K̄ and
that her initial wealth is K0. Then, the optimum value of her welfare is
K̄ −K0. The important characteristic of this objective function is that the
agent’s welfare is independent of the path followed for approaching K̄. The
marginal social product of a rise in K0 is thus q(0) = ∂(K̄ −K0)/∂K0 = −1,
which is independent of the marginal social productivities of K along the
way to the optimum K̄. Consequently, the value of the shadow price at t = 0
does not put any restriction on future values of the shadow price. The same
argument holds for the shadow price at any later point in time. In other
words, q(t) = ∂(K̄ −K(s))/∂K(s) = −1 ∀s > t. Hence, for this problem,
the co-state variable does not converge to zero.

Let us now state and work out the example algebraically. The problem
is stated as follows:

Maximize
∫∞
0 (1− y) u dt
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subject to

ẏ = (1− y) u,

y(0) = 0,

u ∈ [0, 1].

Obviously, u and y are respectively the control and state variables for this
problem.

Solution:

Substituting the state equation in the objective function,

∫ ∞

0
ẏ dt = y|∞0

= lim t→∞ y(t).

The problem thus reduces to maximizing lim t→∞ y(t). To find the upper
bound of y, we solve the equation

ẏ + (y − 1) u = 0.

Substituting z = y − 1, the equation reduces to

ż + zu = 0.

The solution to this equation is

z(t) = be−
∫ t

0
u(ν)dν , b = constant,
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or,

y(t) = 1 + b e−
∫ t

0
u(ν) dν .

At t = 0, y(0) = 0 = 1 + b, or, b = −1. Hence, the general solution

is y(t) = 1 − e−
∫ t

0
u(ν)dν . Writing

∫ t
0 u(ν)dν = h(t) ≥ 0, the solution is

y(t) = 1− eh(t), whence y(t) ∈ [0, 1). Thus, the upper bound of y(t) is unity
and any path leading to it is a solution to the problem. There is no unique
optimum path. Indeed, any constant u ∈ (0, 1) is a solution to the problem.
Suppose such a constant u∗ is selected.

The Hamiltonian for the problem is

H = (1− y) u + λ (1− y) u

= ((1− y)(1 + λ)) u.

The FOC’s are:

ẏ = u (1− y),

λ̇ = (1 + λ) u,

(1− y)(1 + λ) = 0.

Choose λ∗ = −1 ∀ t. Then (u, λ) = (u∗,−1) satisfies all the optimality
conditions, but lim t→∞ λ(t) 6= 0. Note that the value of the co-state variable
tallies with the one we obtained above from purely economic arguments.

This completes the counter-example.
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