Figurative Language Processing in Social Media: Humor Recognition and Irony Detection

Paolo Rosso
prosso@dsic.upv.es
http://users.dsic.upv.es/grupos/nle

Joint work with Antonio Reyes Pérez

Natural Language Engineering Lab
Universidad Politécnica de Valencia

FIRE, India
December 17-19 2012
Contents

Introduction
 Objective
 Research Questions

Problem
 Figurative Language
 Humor & Irony

Our Approach
 FLP
 Challenges

Humor Model
 Integral HRM
 Evaluation

Irony Model
 Basic IDM
 Complex IDM

Applicability
 Humor Retrieval
 Online Reputation

Conclusions
Objective

- Develop a linguistic-based framework for figurative language processing.
- In particular, figurative language concerning two independent tasks:
 - Humor recognition.
 - Irony detection.
- Identify figurative uses of both devices in social media texts.
 - Non prototypical examples at textual level.
One-liners (very short texts): any pattern?

- Jesus saves, and at today’s prices, that’s a miracle!
- Love is blind, but marriage is a real eye-opener.
- Drugs may lead to nowhere, but at least it’s a scenic route.
- Become a computer programmer and never see the world again.
- My software never has bugs; it just develops random features.
- God must love stupid people. He made so many of them.
Humor recognition: some hints

- **Antonyms**
 - Love is *blind*, but marriage is a real *eye-opener*.

- **Human weakness**
 - Drugs may lead to nowhere, but at least it’s a scenic route.

- **Common topics — communities**
 - Become a *computer programmer* and never see the world again.

- **Ambiguity**
 - Jesus *saves*, and at today’s prices, that’s a miracle!

- **Irony**
 - God must love *stupid people*. He made so many of them.
Irony detection: coarse or fine-grained? Irony, sarcasm or satire?

- If you find it hard to laugh at yourself, I would be happy to do it for you.
- God must love stupid people. He made so many of them.
Irony detection in social media: Twitter

- Toyota’s new slogan ;moving forward (even if u don’t want to); hahahaha :)
- 'Toyota; moving forward.' Yeah because you have faulty brakes and jammed accelerators. :P
- My car broke down! Noooooooooo! I bought a Toyota so that it wouldn’t brake down.:(
- CERN recruiting engineers from Toyota for further improvements to their particle accelerator :P iamconCERNed
Research Questions

▶ How to differentiate between literal language and figurative language (theoretically and automatically)?

▶ How to identify phenomena whose primary attributes rely on information beyond the scope of linguistic arguments?

▶ What are the formal elements (at linguistic level) to determine that any statement is funny or ironic?

▶ If figurative language is not only a linguistic phenomenon, then how useful is to define figurative models based on linguistic knowledge?

▶ Is there any applicability beyond lab (ad hoc) scenarios concerning figurative language, especially, concerning humor and irony?
Literal Language

- Notion of true, exact or real meaning.
- A word (isolated or within a context) conveys one single meaning.
- Meaning is invariant in all contexts.

- *Flower*
 - Same meaning in all contexts.
 - Senseless beyond its main referent.
 - Poetry, evolution.
 - Meaning cannot be deviated
Figurative Language

- Literally = 🌸

- Figuratively may refer to secondary referents:

 ![Female symbol](gender.png) ![Peace symbol](peace.png) ![Beauty](beauty.png)

- Secondary referents are not necessarily related to the main referent.
- Figurative meaning is not given a priori, it must be implicated.
- Intentionality.
Humor

- Amusing effects, such as laughter or well-being sensations.
- Main function is to release emotions, sentiments or feelings.
- Various categories.

- Verbal humor.
- Linguistic approach.
- Linguistic mechanisms to generate humor.
Humor

- Amusing effects, such as laughter or well-being sensations.
- Main function is to release emotions, sentiments or feelings.
- Various categories.

- Verbal humor.
- Linguistic approach.
- Linguistic mechanisms to generate humor.

 - I’m on a thirty day diet. So far, I have lost 15 days (incongruity).
 - Change is inevitable, except from a vending machine (ambiguity).
 - God must love stupid people. He made so many of them. (irony).
Humor

- Amusing effects, such as laughter or well-being sensations.
- Main function is to release emotions, sentiments or feelings.
- Various categories.

- Verbal humor.
- Linguistic approach.
- Linguistic mechanisms to generate humor.
 - I'm on a thirty day diet. So far, I have lost 15 days (*incongruity*).
 - Change is inevitable, except from a vending machine (*ambiguity*).
 - God must love stupid people. He made so many of them. (*irony*).

Operational Definition: Figurative device that takes advantage of different resources (mostly related to figurative uses) to produce a specific effect: laughter.
Humor

- Amusing effects, such as laughter or well-being sensations.
- Main function is to release emotions, sentiments or feelings.
- Various categories.

- Verbal humor.
- Linguistic approach.
- Linguistic mechanisms to generate humor.
 - I’m on a thirty day diet. So far, I have lost 15 days (*incongruity*).
 - Change is inevitable, except from a vending machine (*ambiguity*).
 - God must love stupid people. He made so many of them. (*irony*).

Humor

Operational Definition: Figurative device that takes advantage of different resources (mostly related to figurative uses) to produce a specific effect: laughter.
Irony

- Opposition of what it is literally said.
- Most studies have a linguistic approach.
- Verbal irony.
- Conflicting frames of reference.
 - I feel so miserable without you, it’s almost like having you here.
 - Don’t worry about what people think. They don’t do it very often.
 - Sometimes I need what only you can provide: your absence.
Irony

- Opposition of what it is literally said.
- Most studies have a linguistic approach.
- Verbal irony.
- Conflicting frames of reference.
 - I feel so miserable without you, it’s almost like having you here.
 - Don’t worry about what people think. They don’t do it very often.
 - Sometimes I need what only you can provide: your absence.
- Quite related to devices such as sarcasm, satire, or even humor.
- Experts often consider subtypes of irony (Colston, Gibbs, Attardo).

Operational Definition: Linguistic device in which there is opposition between what it is literally communicated and what it is figuratively implicated.

- **Aim**: communicate the opposite of what is literally said.
- **Effect**: sarcastic, satiric, or even funny interpretation.
Irony

- Opposition of what it is literally said.
- Most studies have a linguistic approach.
- Verbal irony.
- Conflicting frames of reference.
 - I feel so miserable without you, it’s almost like having you here.
 - Don’t worry about what people think. They don’t do it very often.
 - Sometimes I need what only you can provide: your absence.
- Quite related to devices such as sarcasm, satire, or even humor.
- Experts often consider subtypes of irony (Colston, Gibbs, Attardo).

Irony

Operational Definition: Linguistic device in which there is opposition between what it is literally communicated and what it is figuratively implicated.

- **Aim:** communicate the opposite of what is literally said.
- **Effect:** sarcastic, satiric, or even funny interpretation.
Figurative Language Processing

- May be considered as a subfield of Natural Language Processing.
- Focused on finding formal elements to computationally process figurative uses of natural language.
- State of the art.
 - Humor generation & recognition.
 - Phonological, incongruity, semantics (Binsted, Mihalcea, Strapparava).
Figurative Language Processing

- May be considered as a subfield of Natural Language Processing.
- Focused on finding formal elements to computationally process figurative uses of natural language.

State of the art.

- Humor generation & recognition.
 - Phonological, incongruity, semantics (Binsted, Mihalcea, Strapparava).

- Irony, sarcasm & satire detection.
 - Similes, onomatopoeic expressions, headlines (Veale, Hao, Carvalho, Tsur).
Figurative Language Processing

- May be considered as a subfield of Natural Language Processing.
- Focused on finding formal elements to computationally process figurative uses of natural language.
- State of the art.
 - Humor generation & recognition.
 - Phonological, incongruity, semantics (Binsted, Mihalcea, Strapparava).
 - Irony, sarcasm & satire detection.
 - Similes, onomatopoeic expressions, headlines (Veale, Hao, Carvalho, Tsur).
- Aim
 - Non-factual information that is linguistically expressed.
 - Represent salient attributes of humor and irony, respectively.
 - *What casual speakers believe to be humor and irony in a social media text.*
Figurative Language Processing

- May be considered as a subfield of Natural Language Processing.
- Focused on finding formal elements to computationally process figurative uses of natural language.
- State of the art.
 - Humor generation & recognition.
 - Phonological, incongruity, semantics (Binsted, Mihalcea, Strapparava).
 - Irony, sarcasm & satire detection.
 - Similes, onomatopoeic expressions, headlines (Veale, Hao, Carvalho, Tsur).
- Aim
 - Non-factual information that is linguistically expressed.
 - Represent salient attributes of humor and irony, respectively.
 - *What casual speakers believe to be humor and irony in a social media text.*
Challenges

- Focused on non prototypical (ad hoc) examples.
- Theory does not often match *real examples*.
- Particularities support generalities.

- Model evaluation.
- Sparse (null) data.
 - Subjective task.
 - Personal decisions.
 - *Concrete boundaries do not exist for casual speakers.*
Challenges

- Focused on non prototypical (ad hoc) examples.
- Theory does not often match *real examples*.
- Particularities support generalities.
- Model evaluation.
- Sparse (null) data.
 - Subjective task.
 - Personal decisions.
 - *Concrete boundaries do not exist for casual speakers.*
- Applicability.
 - Relevance of web-based technologies.
 - Fine-grained knowledge for several tasks.
Challenges

- Focused on non prototypical (ad hoc) examples.
- Theory does not often match *real examples*.
- Particularities support generalities.
- Model evaluation.
- Sparse (null) data.
 - Subjective task.
 - Personal decisions.
 - *Concrete boundaries do not exist for casual speakers.*
- Applicability.
 - Relevance of web-based technologies.
 - Fine-grained knowledge for several tasks.
Humor Recognition Model

- Advances in humor processing.
- More complex linguistic patterns.
 - What do you use to talk an elephant? An elly-phone.
 - Infants don’t enjoy infancy like adults do adultery.
- Ambiguity.
 - Two or more possible interpretations.
Humor Recognition Model

- Advances in humor processing.
- More complex linguistic patterns.
 - What do you use to talk an elephant? An elly-phone.
 - Infants don’t enjoy infancy like adults do adultery.
- Ambiguity.
 - Two or more possible interpretations.
- Ambiguity-based patterns.
 - Lexical.
 - Drugs may lead to nowhere, but at least it’s a scenic route.
 - Morphological.
 - Customer: I’ll have two lamb chops, and make them lean, please. Waiter: To which side, sir?
 - Syntactic.
 - Parliament fighting inflation is like the Mafia fighting crime.
 - Semantic.
 - Jesus saves, and at today’s prices, that’s a miracle!
Humor Recognition Model

- Advances in humor processing.
- More complex linguistic patterns.
 - What do you use to talk an elephant? An elly-phone.
 - Infants don’t enjoy infancy like adults do adultery.
- Ambiguity.
 - Two or more possible interpretations.
- Ambiguity-based patterns.
 - Lexical.
 - Drugs may lead to nowhere, but at least it’s a scenic route.
 - Morphological.
 - Customer: I’ll have two lamb chops, and make them lean, please.
 Waiter: To which side, sir?
 - Syntactic.
 - Parliament fighting inflation is like the Mafia fighting crime.
 - Semantic.
 - Jesus saves, and at today’s prices, that’s a miracle!
Ambiguity-based patterns

- Lexical.
 - Predictable sequences of words.
 - *Bank*: financial - money, checks, etc.
 - Perplexity.

\[PP(W) = \sqrt[N]{\frac{1}{P(w_1w_2\ldots w_N)}} \]

- Morphological.
 - *Lay*: either a noun, verb, or adjective.
 - Literal meaning is broken.
 - POS tags
Ambiguity-based patterns

- **Lexical.**
 - Predictable sequences of words.
 - *Bank:* financial - money, checks, etc.
 - **Perplexity.**
 \[PP(W) = \sqrt[\mathcal{N}]{\frac{1}{P(w_1 w_2 \ldots w_N)}} \]

- **Morphological.**
 - *Lay:* either a noun, verb, or adjective.
 - Literal meaning is broken.
 - **POS tags**

- **Syntactic.**
 - Complexity of syntactic dependencies.
 - **Sentence complexity.**
 \[SC = \forall t_n \frac{\sum v_i + \sum n_i}{\sum cl} \]
Ambiguity-based patterns

- **Lexical.**
 - Predictable sequences of words.
 - *Bank*: financial - money, checks, etc.
 - **Perplexity.**
 \[
 PP(W) = \sqrt[N]{\frac{1}{P(w_1w_2\ldots w_N)}}
 \]

- **Morphological.**
 - *Lay*: either a noun, verb, or adjective.
 - Literal meaning is broken.
 - **POS tags**

- **Syntactic.**
 - Complexity of syntactic dependencies.
 - **Sentence complexity.**
 \[
 SC = \forall t_n \sum \frac{v_l + \sum n_l}{\sum cl}
 \]

- **Semantic.**
 - Words profile multiple senses.
 - **Semantic dispersion.**
 \[
 \delta(w_s) = \frac{1}{P(|S|, 2)} \sum_{s_i, s_j \in S} d(s_i, s_j)
 \]
Ambiguity-based patterns

- **Lexical.**
 - Predictable sequences of words.
 - *Bank*: financial - money, checks, etc.
 - **Perplexity.**
 \[
 PP(W) = \sqrt{\frac{1}{N P(w_1 w_2 \ldots w_N)}}
 \]

- **Morphological.**
 - *Lay*: either a noun, verb, or adjective.
 - Literal meaning is broken.
 - **POS tags**

- **Syntactic.**
 - Complexity of syntactic dependencies.
 - **Sentence complexity.**
 \[
 SC = \sum_{t_n} \frac{v_l + n_l}{\sum c_l}
 \]

- **Semantic.**
 - Words profile multiple senses.
 - **Semantic dispersion.**
 \[
 \delta(w_s) = \frac{1}{P(|S|, 2)} \sum_{s_i, s_j \in S} d(s_i, s_j)
 \]
First Evaluation

- Frequency of patterns.
- Data sets used in humor processing.
 - H1. Italian quotations. Size 1,966.
 - H2. English one-liners. Size 16,000.
- How well the set of patterns matches two types of discourses.
- Hints about the presence of ambiguity-based patterns in humor.
First Evaluation

- Frequency of patterns.
- Data sets used in humor processing.
 - H1. Italian quotations. Size 1,966.
 - H2. English one-liners. Size 16,000.
- How well the set of patterns matches two types of discourses.
- Hints about the presence of ambiguity-based patterns in humor.
- Preliminary findings
 - Romance languages such as Italian (H1) and Catalan (H3) seem to be less predictable than English (H2).
 - Humorous statements, on average, often use verbs and nouns to produce ambiguity.
 - Different interpreting frames tend to generate humor.
First Evaluation

- Frequency of patterns.
- Data sets used in humor processing.
 - H1. Italian quotations. Size 1,966.
 - H2. English one-liners. Size 16,000.
- How well the set of patterns matches two types of discourses.
- Hints about the presence of ambiguity-based patterns in humor.
- Preliminary findings
 - Romance languages such as Italian (H1) and Catalan (H3) seem to be less predictable than English (H2).
 - Humorous statements, on average, often use verbs and nouns to produce ambiguity.
 - Different interpreting frames tend to generate humor.
- Adding surface patterns.
 - Humor Domain.
 - Polarity.
 - Templates.
 - Affectiveness
First Evaluation

- Frequency of patterns.
- Data sets used in humor processing.
 - **H1.** Italian quotations. Size 1,966.
 - **H2.** English one-liners. Size 16,000.
 - **H3.** Catalan stories by children. Size 4,039.
- How well the set of patterns matches two types of discourses.
- Hints about the presence of ambiguity-based patterns in humor.

- Preliminary findings
 - Romance languages such as Italian (H1) and Catalan (H3) seem to be less predictable than English (H2).
 - Humorous statements, on average, often use verbs and nouns to produce ambiguity.
 - Different interpreting frames tend to generate humor.

- Adding surface patterns.
 - Humor Domain.
 - Polarity.
 - Templates.
 - Affectiveness
Second Evaluation

- New data set
 - Collected from LiveJournal.com

- Goal: classify texts into the data set they belong to.

- Humor Average Score.
 1. Let \((p_1 \ldots p_n)\) be HRM’ patterns, concerning both ambiguity-based and surface patterns.
 2. Let \((b_1 \ldots b_k)\) be the set of documents in H4, regardless of the subset they belong to.
 3. If \(b_k \left(\frac{\sum p_1 \ldots p_n}{|B|} \right) \geq 0.5\), then humor average for \(b_k\) was = 1.
 4. Otherwise, humor average was = 0.
Figurative Language Processing in Social Media

Introduction
Objective
Research Questions
Problem
Figurative Language
Humor & Irony
Our Approach
FLP
Challenges
Humor Model
Integral HRM
Evaluation
Irony Model
Basic IDM
Complex IDM
Applicability
Humor Retrieval
Online Reputation
Conclusions

Second Evaluation

- New data set
 - Collected from LiveJournal.com
- Goal: classify texts into the data set they belong to.

- Humor Average Score.
 1. Let \((p_1 \ldots p_n)\) be HRM’ patterns, concerning both ambiguity-based and surface patterns.
 2. Let \((b_1 \ldots b_k)\) be the set of documents in H4, regardless of the subset they belong to.
 3. If \(b_k \left(\frac{\sum p_1 \ldots p_n}{|B|}\right) \geq 0.5\), then humor average for \(b_k\) was = 1.
 4. Otherwise, humor average was = 0.

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
<th>Precision</th>
<th>Recall</th>
<th>F-measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humor</td>
<td>89.63 %</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
</tr>
<tr>
<td>Angry</td>
<td>71.40 %</td>
<td>0.71</td>
<td>0.71</td>
<td>0.71</td>
</tr>
<tr>
<td>Happy</td>
<td>83.87 %</td>
<td>0.84</td>
<td>0.84</td>
<td>0.84</td>
</tr>
<tr>
<td>Sad</td>
<td>66.13 %</td>
<td>0.67</td>
<td>0.66</td>
<td>0.66</td>
</tr>
<tr>
<td>Scared</td>
<td>69.67 %</td>
<td>0.70</td>
<td>0.70</td>
<td>0.69</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>62.63 %</td>
<td>0.71</td>
<td>0.63</td>
<td>0.58</td>
</tr>
<tr>
<td>General</td>
<td>51.86 %</td>
<td>0.55</td>
<td>0.52</td>
<td>0.44</td>
</tr>
<tr>
<td>Wikipedia</td>
<td>76.75 %</td>
<td>0.78</td>
<td>0.77</td>
<td>0.77</td>
</tr>
</tbody>
</table>
Second Evaluation

- New data set
 - Collected from LiveJournal.com
- Goal: classify texts into the data set they belong to.

- **Humor Average Score.**
 1. Let \((p_1 \ldots p_n)\) be HRM’ patterns, concerning both ambiguity-based and surface patterns.
 2. Let \((b_1 \ldots b_k)\) be the set of documents in H4, regardless of the subset they belong to.
 3. If \(b_k \left(\sum_{i=1}^{n} p_i \right) / |B| \geq 0.5\), then humor average for \(b_k\) was = 1.
 4. Otherwise, humor average was = 0.

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
<th>Precision</th>
<th>Recall</th>
<th>F-measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humor</td>
<td>89.63 %</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
</tr>
<tr>
<td>Angry</td>
<td>71.40 %</td>
<td>0.71</td>
<td>0.71</td>
<td>0.71</td>
</tr>
<tr>
<td>Happy</td>
<td>83.87 %</td>
<td>0.84</td>
<td>0.84</td>
<td>0.84</td>
</tr>
<tr>
<td>Sad</td>
<td>66.13 %</td>
<td>0.67</td>
<td>0.66</td>
<td>0.66</td>
</tr>
<tr>
<td>Scared</td>
<td>69.67 %</td>
<td>0.70</td>
<td>0.70</td>
<td>0.69</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>62.63 %</td>
<td>0.71</td>
<td>0.63</td>
<td>0.58</td>
</tr>
<tr>
<td>General</td>
<td>51.86 %</td>
<td>0.55</td>
<td>0.52</td>
<td>0.44</td>
</tr>
<tr>
<td>Wikipedia</td>
<td>76.75 %</td>
<td>0.78</td>
<td>0.77</td>
<td>0.77</td>
</tr>
</tbody>
</table>
Insights

- Results comparable to the ones reported in previous research works.
- Some sets seem to have a lot of humorous content.
 - Intrinsic task complexity.
- Humor’s psychological branch.
 - Do we laugh for not suffering?
- Specialized contents (Wikipedia) are well discriminated.
- Not all the patterns are equally relevant.

<table>
<thead>
<tr>
<th>RANKING</th>
<th>PATTERN</th>
<th>FEATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lexical ambiguity</td>
<td>PPL</td>
</tr>
<tr>
<td>2</td>
<td>Domain</td>
<td>Adult slang, wh-templates, relationships, nationalities</td>
</tr>
<tr>
<td>3</td>
<td>Semantic ambiguity</td>
<td>Semantic dispersion</td>
</tr>
<tr>
<td>4</td>
<td>Affectiveness</td>
<td>Emotional content</td>
</tr>
<tr>
<td>5</td>
<td>Morphological ambiguity</td>
<td>POS tags</td>
</tr>
<tr>
<td>6</td>
<td>Templates</td>
<td>Mutual information</td>
</tr>
<tr>
<td>7</td>
<td>Polarity</td>
<td>Positive/Negative</td>
</tr>
<tr>
<td>8</td>
<td>Syntactic ambiguity</td>
<td>Sentence complexity</td>
</tr>
</tbody>
</table>
Basic IDM

- First approach.
- Low level patterns.
 - N-grams: frequent sequences of words.
 - Descriptors: tuned up sequences of words.
 - POS n-grams: POS templates.
 - Polarity: underlying polarity.
 - Affectiveness: emotional content.
 - Pleasantness: degree of pleasure.

- Data set I1.
- User-generated tags: wisdom of the crowd.
- Viral effect: Amazon products.

<table>
<thead>
<tr>
<th></th>
<th>I1 (+)</th>
<th>AMA (-)</th>
<th>SLA (-)</th>
<th>TRI (-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language</td>
<td>English</td>
<td>English</td>
<td>English</td>
<td>English</td>
</tr>
<tr>
<td>Size</td>
<td>2,861</td>
<td>3,000</td>
<td>3,000</td>
<td>3,000</td>
</tr>
<tr>
<td>Type</td>
<td>Reviews</td>
<td>Reviews</td>
<td>Comments</td>
<td>Opinions</td>
</tr>
<tr>
<td>Source</td>
<td>Amazon</td>
<td>Amazon</td>
<td>Slashdot</td>
<td>TripAdvisor</td>
</tr>
</tbody>
</table>
Basic IDM

- First approach.
- Low level patterns.
 - **N-grams**: frequent sequences of words.
 - **Descriptors**: tuned up sequences of words.
 - **POS n-grams**: POS templates.
 - **Polarity**: underlying polarity.
 - **Affectiveness**: emotional content.
 - **Pleasantness**: degree of pleasure.

- Data set I1.
- User-generated tags: wisdom of the crowd.
- Viral effect: Amazon products.

<table>
<thead>
<tr>
<th></th>
<th>I1 (+)</th>
<th>AMA (-)</th>
<th>SLA (-)</th>
<th>TRI (-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language</td>
<td>English</td>
<td>English</td>
<td>English</td>
<td>English</td>
</tr>
<tr>
<td>Size</td>
<td>2,861</td>
<td>3,000</td>
<td>3,000</td>
<td>3,000</td>
</tr>
<tr>
<td>Type</td>
<td>Reviews</td>
<td>Reviews</td>
<td>Comments</td>
<td>Opinions</td>
</tr>
<tr>
<td>Source</td>
<td>Amazon</td>
<td>Amazon</td>
<td>Slashdot</td>
<td>TripAdvisor</td>
</tr>
</tbody>
</table>
Wisdom of Crowd

Customer Reviews
The Mountain Three Wolf Moon Short Sleeve Tee

2,155 Reviews

<table>
<thead>
<tr>
<th>Rating</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 star</td>
<td>(1,747)</td>
</tr>
<tr>
<td>4 star</td>
<td>(145)</td>
</tr>
<tr>
<td>3 star</td>
<td>(64)</td>
</tr>
<tr>
<td>2 star</td>
<td>(42)</td>
</tr>
<tr>
<td>1 star</td>
<td>(157)</td>
</tr>
</tbody>
</table>

Average Customer Review: 4.5 stars (2,155 customer reviews)

Search Customer Reviews

The most helpful favorable review:

⭐⭐⭐⭐⭐ Dual Function Design
This item has wolves on it which makes it intrinsically sweet and worth 5 stars by itself, but once I tried it on, that's when the magic happened. After checking to ensure that the shirt would properly cover my girth, I walked from my trailer to Wal-mart with the shirt on and was immediately approached by women. The women knew from the wolves on my shirt that I, like a...

Read the full review>

Published on November 10, 2008 by B. Govern

The most helpful critical review:

⭐⭐⭐⭐⭐ May have side effects
The effect that this t-shirt has on women is pretty impressive. Unfortunately its natural healing powers reversed my vasectomy and I impregnated nine women in two weeks before I realized. They all had twin boys. Now I have 18 sons and spend most of my money on child support and condoms.

Published on May 29, 2009 by Frank

See more 3 star, 2 star, 1 star reviews

See more 5 star, 4 star reviews

This product

The Mountain Three Wolf Moon Short Sleeve Tee by The Mountain

$36.00 - $26.96

Add to Wish List

See buying options

Online Reputation
Irony: Beyond a Funny Effect

- Irony and humor tend to overlap their effects.
- Both devices share some similarities (logic entailment).
- They **cannot** be treated as the same device, neither theoretically nor computationally.
- Evaluate HRM’s capabilities to accurately classify instances of irony.
Irony: Beyond a Funny Effect

- Irony and humor tend to overlap their effects.
- Both devices share some similarities (logic entailment).
- They **cannot** be treated as the same device, neither theoretically nor computationally.
- Evaluate HRM’s capabilities to accurately classify instances of irony.

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMA</td>
<td>57.62 %</td>
</tr>
<tr>
<td>SLA</td>
<td>73.28 %</td>
</tr>
<tr>
<td>TRI</td>
<td>48.33 %</td>
</tr>
</tbody>
</table>

- Enhancing basic IDM.
 - N-grams
 - Descriptors
 - POS n-grams
 - **Funniness**: relationship between humor and irony.
 - Polarity
 - Affectiveness
 - Pleasantness
Irony: Beyond a Funny Effect

- Irony and humor tend to overlap their effects.
- Both devices share some similarities (logic entailment).
- They cannot be treated as the same device, neither theoretically nor computationally.
- Evaluate HRM’s capabilities to accurately classify instances of irony.

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMA</td>
<td>57.62 %</td>
</tr>
<tr>
<td>SLA</td>
<td>73.28 %</td>
</tr>
<tr>
<td>TRI</td>
<td>48.33 %</td>
</tr>
</tbody>
</table>

- Enhancing basic IDM.
 - N-grams
 - Descriptors
 - POS n-grams
 - Funniness: relationship between humor and irony.
 - Polarity
 - Affectiveness
 - Pleasantness
Evaluation

- Document representation.

\[\delta_{i,j}(d_k) = \frac{f_{df_i,j}}{|d|} \]

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMA</td>
<td>72.18 %</td>
<td>0.745</td>
<td>0.666</td>
<td>0.703</td>
</tr>
<tr>
<td>SLA</td>
<td>75.19 %</td>
<td>0.700</td>
<td>0.886</td>
<td>0.782</td>
</tr>
<tr>
<td>TRI</td>
<td>87.17 %</td>
<td>0.853</td>
<td>0.898</td>
<td>0.875</td>
</tr>
<tr>
<td>SVM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMA</td>
<td>75.75 %</td>
<td>0.771</td>
<td>0.725</td>
<td>0.747</td>
</tr>
<tr>
<td>SLA</td>
<td>73.34 %</td>
<td>0.706</td>
<td>0.804</td>
<td>0.752</td>
</tr>
<tr>
<td>TRI</td>
<td>89.03 %</td>
<td>0.883</td>
<td>0.899</td>
<td>0.891</td>
</tr>
<tr>
<td>DT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMA</td>
<td>74.13 %</td>
<td>0.737</td>
<td>0.741</td>
<td>0.739</td>
</tr>
<tr>
<td>SLA</td>
<td>75.12 %</td>
<td>0.728</td>
<td>0.806</td>
<td>0.765</td>
</tr>
<tr>
<td>TRI</td>
<td>89.05 %</td>
<td>0.891</td>
<td>0.888</td>
<td>0.890</td>
</tr>
</tbody>
</table>
Evaluation

- Document representation.

\[\delta_{i,j}(d_k) = \frac{df_{i,j}}{|d|} \]

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td>AMA</td>
<td>72.18 %</td>
<td>0.745</td>
<td>0.666</td>
</tr>
<tr>
<td></td>
<td>SLA</td>
<td>75.19 %</td>
<td>0.700</td>
<td>0.886</td>
</tr>
<tr>
<td></td>
<td>TRI</td>
<td>87.17 %</td>
<td>0.853</td>
<td>0.898</td>
</tr>
<tr>
<td>SVM</td>
<td>AMA</td>
<td>75.75 %</td>
<td>0.771</td>
<td>0.725</td>
</tr>
<tr>
<td></td>
<td>SLA</td>
<td>73.34 %</td>
<td>0.706</td>
<td>0.804</td>
</tr>
<tr>
<td></td>
<td>TRI</td>
<td>89.03 %</td>
<td>0.883</td>
<td>0.899</td>
</tr>
<tr>
<td>DT</td>
<td>AMA</td>
<td>74.13 %</td>
<td>0.737</td>
<td>0.741</td>
</tr>
<tr>
<td></td>
<td>SLA</td>
<td>75.12 %</td>
<td>0.728</td>
<td>0.806</td>
</tr>
<tr>
<td></td>
<td>TRI</td>
<td>89.05 %</td>
<td>0.891</td>
<td>0.888</td>
</tr>
</tbody>
</table>

- Accuracy seems to be acceptable. Not as expected.
 - Baseline = 54 %. Basic IDM goes from 72 % up to 89 %.
Evaluation

- Document representation.

\[\delta_{i,j}(d_k) = \frac{f_{df_{i,j}}}{|d|} \]

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMA</td>
<td>72.18 %</td>
<td>0.745</td>
<td>0.666</td>
<td>0.703</td>
</tr>
<tr>
<td>SLA</td>
<td>75.19 %</td>
<td>0.700</td>
<td>0.886</td>
<td>0.782</td>
</tr>
<tr>
<td>TRI</td>
<td>87.17 %</td>
<td>0.853</td>
<td>0.898</td>
<td>0.875</td>
</tr>
<tr>
<td>SVM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMA</td>
<td>75.75 %</td>
<td>0.771</td>
<td>0.725</td>
<td>0.747</td>
</tr>
<tr>
<td>SLA</td>
<td>73.34 %</td>
<td>0.706</td>
<td>0.804</td>
<td>0.752</td>
</tr>
<tr>
<td>TRI</td>
<td>89.03 %</td>
<td>0.883</td>
<td>0.899</td>
<td>0.891</td>
</tr>
<tr>
<td>DT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMA</td>
<td>74.13 %</td>
<td>0.737</td>
<td>0.741</td>
<td>0.739</td>
</tr>
<tr>
<td>SLA</td>
<td>75.12 %</td>
<td>0.728</td>
<td>0.806</td>
<td>0.765</td>
</tr>
<tr>
<td>TRI</td>
<td>89.05 %</td>
<td>0.891</td>
<td>0.888</td>
<td>0.890</td>
</tr>
</tbody>
</table>

- Accuracy seems to be acceptable. Not as expected.
 - Baseline = 54 %. Basic IDM goes from 72 % up to 89 %.

- Best result when discriminating quite different discourses.
 - Unfortunately I already had this exact picture tattooed on my chest, but this shirt is very useful in colder weather.
 - We chose to stay here based largely on TripAdvisor reviews and were not disappointed.
Evaluation

- Document representation.

\[\delta_{i,j}(d_k) = \frac{\text{fdf}_{i,j}}{|d|} \]

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMA</td>
<td>72.18 %</td>
<td>0.745</td>
<td>0.666</td>
<td>0.703</td>
</tr>
<tr>
<td>SLA</td>
<td>75.19 %</td>
<td>0.700</td>
<td>0.886</td>
<td>0.782</td>
</tr>
<tr>
<td>TRI</td>
<td>87.17 %</td>
<td>0.853</td>
<td>0.898</td>
<td>0.875</td>
</tr>
<tr>
<td>SVM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMA</td>
<td>75.75 %</td>
<td>0.771</td>
<td>0.725</td>
<td>0.747</td>
</tr>
<tr>
<td>SLA</td>
<td>73.34 %</td>
<td>0.706</td>
<td>0.804</td>
<td>0.752</td>
</tr>
<tr>
<td>TRI</td>
<td>89.03 %</td>
<td>0.883</td>
<td>0.899</td>
<td>0.891</td>
</tr>
<tr>
<td>DT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMA</td>
<td>74.13 %</td>
<td>0.737</td>
<td>0.741</td>
<td>0.739</td>
</tr>
<tr>
<td>SLA</td>
<td>75.12 %</td>
<td>0.728</td>
<td>0.806</td>
<td>0.765</td>
</tr>
<tr>
<td>TRI</td>
<td>89.05 %</td>
<td>0.891</td>
<td>0.888</td>
<td>0.890</td>
</tr>
</tbody>
</table>

- Accuracy seems to be acceptable. Not as expected.
 - Baseline = 54%. Basic IDM goes from 72% up to 89%.

- Best result when discriminating quite different discourses.
 - Unfortunately I already had this exact picture tattooed on my chest, but this shirt is very useful in colder weather.
 - We chose to stay here based largely on TripAdvisor reviews and were not disappointed.
Complex IDM

- Basic properties of irony.
- Close related to humor patterns.
- Scope limited.
- Fine-grained patterns.
- Improve basic IDM.
- Four complex patterns
 - **Signatures**: concerning pointedness, counter-factuality, and temporal compression.
 - **Unexpectedness**: concerning temporal imbalance and contextual imbalance.
 - **Style**: as captured by character-grams (c-grams), skip-grams (s-grams), and polarity skip-grams (ps-grams).
 - **Emotional contexts**: concerning activation, imagery, and pleasantness.
Complex IDM

- Basic properties of irony.
- Close related to humor patterns.
- Scope limited.
- Fine-grained patterns.
- Improve basic IDM.
- Four complex patterns
 - **Signatures**: concerning pointedness, counter-factuality, and temporal compression.
 - **Unexpectedness**: concerning temporal imbalance and contextual imbalance.
 - **Style**: as captured by character-grams (c-grams), skip-grams (s-grams), and polarity skip-grams (ps-grams).
 - **Emotional contexts**: concerning activation, imagery, and pleasantness.
Complex IDM

- **Signatures**: Linguistic marks that throw focus onto aspects of a text.
 - **Pointedness**: typographical marks (punctuation or emoticons).
 - **Counter-factuality**: discursive marks. (adverbs implying negation: nevertheless).
 - **Temporal compression**: opposition in time (adverbs of time: suddenly, now).

- **Unexpectedness**: Imbalances in which opposition is a critical feature.
 - **Temporal imbalance** (opposition in a same document).
 - **Contextual imbalance** (inconsistencies within a context - semantic relatedness).
Complex IDM

- **Signatures**: Linguistic marks that throw focus onto aspects of a text.
 - **Pointedness**: typographical marks (punctuation or emoticons).
 - **Counter-factuality**: discursive marks. (adverbs implying negation: nevertheless).
 - **Temporal compression**: opposition in time (adverbs of time: suddenly, now).

- **Unexpectedness**: Imbalances in which opposition is a critical feature.
 - **Temporal imbalance** (opposition in a same document).
 - **Contextual imbalance** (inconsistencies within a context - semantic relatedness).

- **Style**: Fingerprint that determines intrinsic textual characteristics.
 - **Character n-grams** (c-grams). Morphological information.
 - **Skip n-grams** (s-grams). Entire words which allow arbitrary gaps.
 - **Polarity s-grams** (ps-sgrams). Abstract representations based on s-grams.
Complex IDM

► **Signatures:** Linguistic marks that throw focus onto aspects of a text.

 ► **Pointedness:** typographical marks (punctuation or emoticons).
 ► **Counter-factuality:** discursive marks. (adverbs implying negation: nevertheless).
 ► **Temporal compression:** opposition in time (adverbs of time: suddenly, now).

► **Unexpectedness:** Imbalances in which opposition is a critical feature.

 ► **Temporal imbalance** (opposition in a same document).
 ► **Contextual imbalance** (inconsistencies within a context - semantic relatedness).

► **Style:** Fingerprint that determines intrinsic textual characteristics.

 ► **Character n-grams** (c-grams). Morphological information.
 ► **Skip n-grams** (s-grams). Entire words which allow arbitrary gaps.
 ► **Polarity s-grams** (ps-sgrams). Abstract representations based on s-grams.

► **Emotional contexts:** Contents beyond grammar, and beyond positive or negative polarity.

 ► **Activation:** degree of response, either passive or active, that humans have under an emotional state.
 ► **Imagery:** how difficult is to form a mental picture of a given word.
 ► **Pleasantness:** degree of pleasure produced by words.
Complex IDM

- **Signatures**: Linguistic marks that throw focus onto aspects of a text.
 - **Pointedness**: typographical marks (punctuation or emoticons).
 - **Counter-factuality**: discursive marks. (adverbs implying negation: nevertheless).
 - **Temporal compression**: opposition in time (adverbs of time: suddenly, now).

- **Unexpectedness**: Imbalances in which opposition is a critical feature.
 - **Temporal imbalance** (opposition in a same document).
 - **Contextual imbalance** (inconsistencies within a context - semantic relatedness).

- **Style**: Fingerprint that determines intrinsic textual characteristics.
 - **Character n-grams** (c-grams). Morphological information.
 - **Skip n-grams** (s-grams). Entire words which allow arbitrary gaps.
 - **Polarity s-grams** (ps-sgrams). Abstract representations based on s-grams.

- **Emotional contexts**: Contents beyond grammar, and beyond positive or negative polarity.
 - **Activation**: degree of response, either passive or active, that humans have under an emotional state.
 - **Imagery**: how difficult is to form a mental picture of a given word.
 - **Pleasantness**: degree of pleasure produced by words.
Evaluation

- **New data set** I2
- **User-generated tags**: #irony.

<table>
<thead>
<tr>
<th></th>
<th>#irony</th>
<th>#education</th>
<th>#humor</th>
<th>#politics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>10,000</td>
<td>10,000</td>
<td>10,000</td>
<td>10,000</td>
</tr>
<tr>
<td>Vocabulary</td>
<td>147,671</td>
<td>138,056</td>
<td>151,050</td>
<td>141,680</td>
</tr>
<tr>
<td>Language</td>
<td>English</td>
<td>English</td>
<td>English</td>
<td>English</td>
</tr>
</tbody>
</table>

- **Two distributions.**
 - Balanced: (50/50).
 - Imbalanced: (30/70).
Results

▸ Balanced.

(a)

(b)

(c)

▸ Imbalanced.

(a)

(b)

(c)
Insights

- Accuracy higher than the baseline (75%).
- Similar results reported in previous research works (44.88% to 85.40%).
 - Focused on sarcasm, satire.
 - Not entirely comparable to the current results.
- Four conceptual patterns cohere as a single framework.
 - No much higher than the baseline (70%).
 - 6% higher than the baseline.
 - Difficulty when irony data are very few.
 - Easier to be right with the data that appear quite often (balanced).
 - Expected scenario.
Insights

- Accuracy higher than the baseline (75%).
- Similar results reported in previous research works (44.88 % to 85.40 %).
 - Focused on sarcasm, satire.
 - Not entirely comparable to the current results.
- Four conceptual patterns cohere as a single framework.
- No much higher than the baseline (70%).
- 6 % higher than the baseline.
 - Difficulty when irony data are very few.
 - Easier to be right with the data that appear quite often (balanced).
 - Expected scenario.
- Evaluate applicability beyond our lab data set.
 - Humor retrieval.
 - Sentiment analysis.
 - Online reputation.
 - Humor taxonomy.
Insights

- Accuracy higher than the baseline (75%).
- Similar results reported in previous research works (44.88 % to 85.40 %).
 - Focused on sarcasm, satire.
 - Not entirely comparable to the current results.
- Four conceptual patterns cohere as a single framework.
- No much higher than the baseline (70%).
- 6 % higher than the baseline.
 - Difficulty when irony data are very few.
 - Easier to be right with the data that appear quite often (balanced).
 - Expected scenario.
- Evaluate applicability beyond our lab data set.
 - Humor retrieval.
 - Sentiment analysis.
 - Online reputation.
 - Humor taxonomy.
Humor Retrieval

- If funny comments are retrieved accurately, they would be of a great entertainment value for the visitors of a given web page.

- 600,000 funny web comments from Slashdot.org.

- Four classes: funny vs. informative (c1), insightful (c2), negative (c3).

<table>
<thead>
<tr>
<th></th>
<th>NB</th>
<th>DT</th>
</tr>
</thead>
<tbody>
<tr>
<td>c₁</td>
<td>73.54 %</td>
<td>74.13 %</td>
</tr>
<tr>
<td>c₂</td>
<td>79.21 %</td>
<td>80.02 %</td>
</tr>
<tr>
<td>c₃</td>
<td>78.92 %</td>
<td>79.57 %</td>
</tr>
</tbody>
</table>
Humor Retrieval

- If funny comments are retrieved accurately, they would be of a great entertainment value for the visitors of a given web page.

- 600,000 funny web comments from Slashdot.org.

- Four classes: *funny* vs. *informative* (c1), *insightful* (c2), *negative* (c3).

<table>
<thead>
<tr>
<th></th>
<th>NB</th>
<th>DT</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>73.54 %</td>
<td>74.13 %</td>
</tr>
<tr>
<td>c2</td>
<td>79.21 %</td>
<td>80.02 %</td>
</tr>
<tr>
<td>c3</td>
<td>78.92 %</td>
<td>79.57 %</td>
</tr>
</tbody>
</table>

- Similar discriminative power (80 % vs. 85 % in H4).

- Humor in web comments is produced by exploiting different linguistic mechanisms.
 - One-liners often cause humor by phonological information.
 - In comments is introduced with a response to a comment of someone else.

- HRM seems to represent humor beyond text-specific examples.
Humor Retrieval

- If funny comments are retrieved accurately, they would be of a great entertainment value for the visitors of a given web page.
- 600,000 funny web comments from Slashdot.org.
- Four classes: funny vs. informative (c1), insightful (c2), negative (c3).

<table>
<thead>
<tr>
<th></th>
<th>NB</th>
<th>DT</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>73.54 %</td>
<td>74.13 %</td>
</tr>
<tr>
<td>c2</td>
<td>79.21 %</td>
<td>80.02 %</td>
</tr>
<tr>
<td>c3</td>
<td>78.92 %</td>
<td>79.57 %</td>
</tr>
</tbody>
</table>

- Similar discriminative power (80 % vs. 85 % in H4).
- Humor in web comments is produced by exploiting different linguistic mechanisms.
 - One-liners often cause humor by phonological information.
 - In comments is introduced with a response to a comment of someone else.
- HRM seems to represent humor beyond text-specific examples.
Online Reputation

- Enterprises have direct access to negative information.
- More difficult to mine knowledge from positive information that implies a negative meaning.
- Detect ironic tweets concerning opinions about #toyota.
 - New #toyota Tshirt: once you drive on you’ll never stop :)
 - Love is like a #Toyota; it can’t be stopped.
- IDM vs. Human annotators
 - Three ironic representative thresholds (A = 1; B = 0.8; C = 0.6).
 - The closer to 1, the more restricted model.
- Annotators agree on 147 ironic tweets of 500.
Online Reputation

- Enterprises have direct access to negative information.
- More difficult to mine knowledge from positive information that implies a negative meaning.
- Detect ironic tweets concerning opinions about #toyota.
 - New #toyota Tshirt: once you drive on you’ll never stop :)
 - Love is like a #Toyota; it can’t be stopped.

- IDM vs. Human annotators
 - Three ironic representative thresholds (A = 1; B = 0.8; C = 0.6).
 - The closer to 1, the more restricted model.

- Annotators agree on 147 ironic tweets of 500.

<table>
<thead>
<tr>
<th>Level</th>
<th>Tweets detected</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>59</td>
<td>56 %</td>
<td>40 %</td>
<td>0.47</td>
</tr>
<tr>
<td>B</td>
<td>93</td>
<td>57 %</td>
<td>63 %</td>
<td>0.60</td>
</tr>
<tr>
<td>C</td>
<td>123</td>
<td>54 %</td>
<td>84 %</td>
<td>0.66</td>
</tr>
</tbody>
</table>
Online Reputation

- Enterprises have direct access to negative information.
- More difficult to mine knowledge from positive information that implies a negative meaning.
- Detect ironic tweets concerning opinions about #toyota.
 - New #toyota Tshirt: once you drive on you’ll never stop :)
 - Love is like a #Toyota; it can’t be stopped.

IDM vs. Human annotators
- Three ironic representative thresholds (A = 1; B = 0.8; C = 0.6).
- The closer to 1, the more restricted model.

Annotators agree on 147 ironic tweets of 500.

<table>
<thead>
<tr>
<th>Level</th>
<th>Tweets detected</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>59</td>
<td>56 %</td>
<td>40 %</td>
<td>0.47</td>
</tr>
<tr>
<td>B</td>
<td>93</td>
<td>57 %</td>
<td>63 %</td>
<td>0.60</td>
</tr>
<tr>
<td>C</td>
<td>123</td>
<td>54 %</td>
<td>84 %</td>
<td>0.66</td>
</tr>
</tbody>
</table>

- Closer to 1, fewer detection.
- Precision needs to be improved. Recall shows applicability to real-world problems.
Online Reputation

- Enterprises have direct access to negative information.
- More difficult to mine knowledge from positive information that implies a negative meaning.
- Detect ironic tweets concerning opinions about #toyota.
 - New #toyota Tshirt: once you drive on you’ll never stop :)
 - Love is like a #Toyota; it can’t be stopped.

- IDM vs. Human annotators
 - Three ironic representative thresholds (A = 1; B = 0.8; C = 0.6).
 - The closer to 1, the more restricted model.

- Annotators agree on 147 ironic tweets of 500.

<table>
<thead>
<tr>
<th>Level</th>
<th>Tweets detected</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>59</td>
<td>56%</td>
<td>40%</td>
<td>0.47</td>
</tr>
<tr>
<td>B</td>
<td>93</td>
<td>57%</td>
<td>63%</td>
<td>0.60</td>
</tr>
<tr>
<td>C</td>
<td>123</td>
<td>54%</td>
<td>84%</td>
<td>0.66</td>
</tr>
</tbody>
</table>

- Closer to 1, fewer detection.
- Precision needs to be improved. Recall shows applicability to real-world problems.
Main Conclusions

- Model representation is given by analyzing the linguistic system as an integral structure.
- Fine-grained patterns to mine valuable knowledge.
- Scope enhanced by considering casual examples of humor and irony.
- Methodology to foster corpus-based approaches.
- No single pattern is distinctly humorous or ironic.
 - All together provided a valuable linguistic inventory for detecting both figurative devices at textual level.
Further Directions

- Improve the quality of textual patterns.
- Fine-grained representation.
 - Sarcasm.
- Comparison with human judgments.
- Manually annotate large-scale examples.
- Approach FLP from different angles.
 - Cognitive and psycholinguistic information.
 - Visual stimuli of brains responses.
 - Gestural information, tone, paralinguistic cues.
Thanks

- Reyes A., P. Rosso. On the Difficulty of Automatically Detecting Irony: Beyond a Simple Case of Negation In *Knowledge and Information Systems*.
Language

- Language is the mean by which we verbalize our reality.
- Language is not static; rather it is in constant interaction between the rules of its grammar and its pragmatic use.
- Just so language acquires its complete meaning.
- I really need some antifreeze in me on cold days like this.
- Grammatical structure is not made intelligible only by the knowledge of the familiar rules of its grammar (Fillmore et al.)
- Cognitive processes to figure out the meaning.
- Referential knowledge: antifreeze is a liquid.
- Inferential knowledge: antifreeze is a liquid, liquor is a liquid, antifreeze is a liquor.
- Language is a continuum.
- Operational bases when formalizing and generalizing language.
- NLP scenario. Need of closed (handleable) categories.
- Otherwise, language is not apprehensible = chaos
I really need some antifreeze in me on cold days like this.

Grammatical structure is not made intelligible only by the knowledge of the familiar rules of its grammar (Fillmore et al.)

Cognitive processes to figure out the meaning.

Referential knowledge: antifreeze is a liquid.

Inferential knowledge: antifreeze is a liquid, liquor is a liquid, antifreeze is a liquor.

Language is a continuum.

Operational bases when formalizing and generalizing language.

NLP scenario. Need of closed (handleable) categories.

Otherwise, language is not apprehensible = chaos
Figure of Speech

- Tropes.
- Devices with an unexpected twist in the meaning of words.
- Similes (when something is like something else).
- Puns (play of words with funny effects).
- Oxymoron (use of contradictory words).

- Schemes.
- Devices in which the meaning is due to patterns of words.
- Antithesis (juxtaposition of contrasting words or ideas).
- Alliteration (sound that is repeated to cause the effect of rhyme).
- Ellipsis (omission of words).
Figure of Speech

- Tropes.
- Devices with an unexpected twist in the meaning of words.
- Similes (when something is like something else).
- Puns (play of words with funny effects).
- Oxymoron (use of contradictory words).

- Schemes.
- Devices in which the meaning is due to patterns of words.
- Antithesis (juxtaposition of contrasting words or ideas).
- Alliteration (sound that is repeated to cause the effect of rhyme).
- Ellipsis (omission of words).
Figurative Language Processing in Social Media

NLEL

Introduction
Objective
Research Questions
Problem
Figurative Language
Humor & Irony
Our Approach
FLP Challenges
Humor Model
Integral HRM Evaluation
Irony Model
Basic IDM
Complex IDM
Applicability
Humor Retrieval
Online Reputation
Conclusions

Semantic Dispersion

Noun

- \(S: (n) \) brake (a restraint used to slow or stop a vehicle)
 - direct hyponym / full hyponym
 - \(S: (n) \) restraint, constraint (a device that retards something's motion) "the car did not have proper restraints fitted"
 - \(S: (n) \) device (an instrumentality invented for a particular purpose) "the device is small enough to wear on your wrist; a device intended to conserve water"
 - \(S: (n) \) instrumentality, instrumentation (an artifact or system of artifacts that is instrumental in accomplishing some end)
 - \(S: (n) \) artifact, artefact (a man-made object taken as a whole)
 - \(S: (n) \) whole, unit (an assemblage of parts that is regarded as a single entity) "how big is that part compared to the whole?"; "the team is a unit"
 - \(S: (n) \) object, physical object (a tangible and visible entity; an entity that can cast a shadow) "it was full of rackets, balls and other objects"
 - \(S: (n) \) physical entity (an entity that has physical existence)
 - \(S: (n) \) entity (that which is perceived or known or inferred to have its own distinct existence (living or nonliving))

1º common hypernym
\(\hat{S}(w_1) = 6 \)

- derivationally related form
- \(S: (n) \) brake (any of various ferns of the genus Pteris having pinnately compound leaves and including several popular houseplants)
 - member holonym
 - direct hypernym / inherited hypernym / sister term
 - \(S: (n) \) fern (any of numerous flowerless and seedless vascular plants having true roots from a rhizome and fronds that uncurl upward; reproduce by spores)
 - \(S: (n) \) pteridophyte, nonflowering plant (plants having vascular tissue and reproducing by spores)
 - \(S: (n) \) vascular plant, tracheophyte (green plant having a vascular system: ferns, gymnosperms, angiosperms)
 - \(S: (n) \) plant, flora, plant life (botany) a living organism lacking the power of locomotion
 - \(S: (n) \) organism, being (a living thing that has (or can develop) the ability to act or function independently)
 - \(S: (n) \) living thing, animate thing (a living (or once living) entity)
 - \(S: (n) \) whole, unit (an assemblage of parts that is regarded as a single entity) "how big is that part compared to the whole?"; "the team is a unit"

1º common hypernym
\(\hat{S}(w_2) = 8 \)
Weighting Patterns?

- No all the patterns are equally discriminating.
- Weights and penalties to tune up the models.
- Some better results when specific data sets are used (Twitter).
- Particularizing vs. Generalizing.
- One (tuned up) model - one (ad hoc) data set.
- The less restricted, the wider applicability.
Representativeness

- When evaluating representativeness we look to whether individual patterns are linguistically correlated to the ways in which users employ words and visual elements when speaking in a mode they consider to be ironic.

\[\delta_{i,j}(d_k) = \frac{fdf_{i,j}}{|d|} \]

- where \(i \) is the \(i \)-th feature (\(i = 1 \ldots 4 \));
- \(j \) is the \(j \)-th dimension of \(i \) (\(j = 1 \ldots 2 \) for unexpectedness, and \(1 \ldots 3 \) otherwise);
- \(fdf \) (feature dimension frequency) is the frequency of dimension \(j \) of feature \(i \); and \(|d| \) is the length (in terms of tokens) of the \(k \)-th document \(d_k \).
Aid Understanding

- **HAHAHAHA!!!** now thats the definition of !!! lol...tell him to kick rocks!

- **Pointedness, $\delta = 0.85$**

- $(HAHAHAHA, !!!, !!!, lol, \ldots, !) \div (hahahaha, now, definit, lol, tell, kick, rock)$.

- **Counter-factuality, $\delta = 0.$**

- **Temporal-compression, $\delta = 0.14$**

- $(now) \div (hahahaha, now, definit, lol, tell, kick, rock)$.

- This process is applied to all dimensions for all four features.

- Once $\delta_{i,j}$ is obtained for every single d_k, a representativeness threshold is established in order to filter the documents that are more likely to have ironic content.

- **Ironic average threshold $= 0.5$**
Aid Understanding

- **HAHAHAHA!!!** now that's the definition of !!! lol...tell him to kick rocks!

- Pointedness, $\delta = 0.85$

- $(HAHAHAHA, !!!, !!!, lol, \ldots, !) \div (hahahaha, now, definit, lol, tell, kick, rock)$.

- Counter-factuality, $\delta = 0$.

- Temporal-compression, $\delta = 0.14$

- $(now) \div (hahahaha, now, definit, lol, tell, kick, rock)$.

- This process is applied to all dimensions for all four features.

- Once $\delta_{i,j}$ is obtained for every single d_k, a representativeness threshold is established in order to filter the documents that are more likely to have ironic content.

- **Ironic average threshold = 0.5**

- Only one dimension exceeds such threshold:

- Counter-factuality, thus it is considered to be representative.
Aid Understanding

- HAHAHAHA!!! now thats the definition of !!! lol...tell him to kick rocks!

- Pointedness, $\delta = 0.85$
- $(HAHAHAHA, !!!, !!!, lol, \ldots, !) \div (hahahaha, now, definit, lol, tell, kick, rock)$.

- Counter-factuality, $\delta = 0$.

- Temporal-compression, $\delta = 0.14$
- $(now) \div (hahahaha, now, definit, lol, tell, kick, rock)$.

- This process is applied to all dimensions for all four features.
- Once $\delta_{i,j}$ is obtained for every single d_k, a representativeness threshold is established in order to filter the documents that are more likely to have ironic content.
- Ironic average threshold = 0.5
- Only one dimension exceeds such threshold:
- Counter-factuality, thus it is considered to be representative.
Figurative Language Processing in Social Media

Introduction

Objective

Research Questions

Problem

Figurative Language

Humor & Irony

Our Approach

FLP

Challenges

Humor Model

Integral HRM

Evaluation

Irony Model

Basic IDM

Complex IDM

Applicability

Humor Retrieval

Online Reputation

Conclusions

- **Pointedness**
 - The govt should investigate him thoroughly; do I smell IRONY
 - Irony is such a funny thing :)
 - Wow the only network working for me today is 3G on my iPhone. WHAT DID I EVER DO TO YOU INTERNET???????

- **Counter-factuality**
 - My latest blog post is about how twitter is for listening. And I love the irony of telling you about it via Twitter.
 - Certainly I always feel compelled, obsessively, to write. Nonetheless I often manage to put a heap of crap between me and starting ...
 - BHO talking in Copenhagen about global warming and DC is about to get 2ft. of snow dumped on it. You just gotta love it.

- **Temporal compression**
 - @ryan_onnolly oh the irony that will occur when they finally end movie piracy and suddenly movie and dvd sales begin to decline sharply.
 - I’m seriously really funny when nobody is around. You should see me. But then you’d be there, and I wouldn’t be funny...
 - RT @ButlerGeorge: Suddenly, thousands of people across Ireland recall that they were abused as children by priests.
Temporal imbalance

- Stop trying to find love, it will find you;...and no, he didn’t say that to me..
- Woman on bus asked a guy to turn it down please; but his music is so loud, he didn’t hear her. Now she has her finger in her ear. The irony

Contextual imbalance

- DC’s snows coinciding with a conference on global warming proves that God has a sense of humor. Relatedness score of 0.3233
- I know sooooo many Haitian-Canadians but they all live in Miami. Relatedness score of 0
- I nearly fall asleep when anyone starts talking about Aderall. Bullshit. Relatedness score of 0.2792
Character n-grams (c-grams)

- **WIF**
 More about Tiger - Now I hear his *wife* saved his life w/ a golf club?

- **TRAI**
 SeaWorld (Orlando) *trainer* killed by killer whale. or reality? oh, I’m sorry politically correct Orca whale

- **NDERS**
 Because common sense isn’t so common it’s important to engage with your market to really *understand* it.

Skip-grams (s-grams)

- 1-skip: *richest ... mexican*
 Our president is black nd the *richest* man is a *Mexican* hahaha hahaha lol

- 2-skips: *love ... love*
 Why is it the Stockholm syndrome if a hostage falls in *love* with her kidnapper? I’d simply call this *love*. ;)

Polarity s-grams (ps-grams)

- 1-skip: *pos-neg*
 Reading *glasses* *pos* have *RUINED* *neg* my eyes. B4, I could see some shit but I’d get a headache. Now, I can’t see shit but my head feels fine

- 2kips: *pos-pos-neg*
 Just heard the *brave* *pos* *hearted* *pos* English Defence *League* *neg* thugs will protest for our freedoms in Edinburgh next month. Mad, Mad, Mad
Figurative Language Processing in Social Media

NLEL

Introduction

Objective

Research Questions

Problem

Figurative Language

Humor & Irony

Our Approach

FLP

Challenges

Humor Model

Integral HRM

Evaluation

Irony Model

Basic IDM

Complex IDM

Applicability

Humor Retrieval

Online Reputation

Conclusions

- **Activation**
 - My favorite part of the optometrist is the irony of the fact that I can't see afterwards. That and the cool sunglasses.
 - My male ego so eager to let it be stated that I am THE MAN but won't allow my pride to admit that being egotistical is a weakness ...

- **Imagery**
 - Yesterday was the official first day of spring ... and there was over a foot of snow on the ground.
 - I think I have to do the very thing that I work most on changing in order to make a real difference paradigms shifts zeitgeist
 - Random drug test today in elkhart before 4. Would be better if I could drive. I will have to drink away the bullshit this weekend. Irony.

- **Pleasantness**
 - The guy who called me Ricky has a blind lunch date.
 - I hope whoever organized this monstrosity realizes that they're playing the opening music for WWE's Monday Night Raw at the Olympics.