De-Preferential Attachment Random Graphs

Antar Bandyopadhyay
(Joint work with Subhabrata Sen)

Theoretical Statistics and Mathematics Unit
Indian Statistical Institute, New Delhi and Kolkata
http://www.isid.ac.in/~antar

Indo-German Workshop on Algorithms
Indian Statistical Institute, Kolkata, India
March 10, 2015
1 Introduction
 • A Toy Model for a Ecosystem/Food-Chain
 • De-Preferential Attachment Model

2 Model Description
 • Notations
 • Models for $m = 1$
 • Models for $m > 1$
 • Earlier Work

3 Main Results
 • For the Linear De-Preferential Case
 • For the Inverse De-Preferential Case

4 Techniques Used in the Proofs
 • Linear Case
 • Inverse Case

5 Special Initial Condition

6 Open Problems
Introduction

- A Toy Model for a Ecosystem/Food-Chain
- De-Preferential Attachment Model

Model Description

- Notations
- Models for $m = 1$
- Models for $m > 1$
- Earlier Work

Main Results

- For the Linear De-Preferential Case
- For the Inverse De-Preferential Case

Techniques Used in the Proofs

- Linear Case
- Inverse Case

Special Initial Condition

Open Problems
Suppose we model an *ecosystem/food-chain* starting with one species where every new species which arrives later is a predator to the existing ones.
A Simple Predator-Prey Ecosystem

- Suppose we model an ecosystem/food-chain starting with one species where every new species which arrives later is a predator to the existing ones.

- It is natural to believe that given a choice, a new predator will like to choose its food from the existing species which are not eaten by many.
A Simple Predator-Prey Ecosystem

- Suppose we model an ecosystem/food-chain starting with one species where every new species which arrives later is a predator to the existing ones.

- It is natural to believe that given a choice, a new predator will like to choose its food from the existing species which are not eaten by many.

- In other words, a new predator will have less incentive or less preference to choose its prey from the existing species which have many predators.
If we now define a graph with vertices as the species and the edges/links between vertices through the predator – prey relation, then such a graph should be modeled by...
A Simple Predator-Prey Ecosystem

If we now define a graph with vertices as the species and the edges/links between vertices through the predator – prey relation, then such a graph should be modeled by

A new vertex prefer to join to an existing vertex with less degree.
A Simple Predator-Prey Ecosystem

- If we now define a graph with vertices as the species and the edges/links between vertices through the predator – prey relation, then such a graph should be modeled by

 A new vertex prefer to join to an existing vertex with less degree.

- This is opposite of the usual "rich get richer model", also known as, preferential attachment model [Barabási and Albert (1999)].
A Simple Predator-Prey Ecosystem

- If we now define a graph with vertices as the species and the edges/links between vertices through the predator – prey relation, then such a graph should be modeled by

 A new vertex prefer to join to an existing vertex with less degree.

- This is opposite of the usual “rich get richer model”, also known as, preferential attachment model [Barabási and Albert (1999)].

- We will call any such model a de-preferential attachment model.
A Simple Predator-Prey Ecosystem

- If we now define a graph with vertices as the species and the edges/links between vertices through the predator – prey relation, then such a graph should be modeled by

 A new vertex prefer to join to an existing vertex with less degree.

- This is opposite of the usual “rich get richer model”, also known as, preferential attachment model [Barabási and Albert (1999)].

- We will call any such model a de-preferential attachment model.

- Our goal will be to study such a model rigorously and compare its properties with the preferential attachment model.
Like in the preferential attachment model we will start with an initial graph G_1 with possibly just one vertex.
De-Preferential Attachment Random Graphs

- Like in the preferential attachment model we will start with an initial graph G_1 with possibly just one vertex.

- We will then grow this graph in a random manner as follows.
Like in the preferential attachment model we will start with an initial graph G_1 with possibly just one vertex.

We will then grow this graph in a random manner as follows.

At every (discrete) time $n + 1 \geq 2$, we will add one new vertex, say v_{n+1} to the existing graph, say G_n, by letting it to join to the existing vertices $\{v_1, v_2, \ldots, v_n\}$.
Like in the preferential attachment model we will start with an initial graph G_1 with possibly just one vertex.

We will then grow this graph in a random manner as follows.

At every (discrete) time $n + 1 \geq 2$, we will add one new vertex, say v_{n+1} to the existing graph, say G_n, by letting it to join to the existing vertices $\{v_1, v_2, \ldots, v_n\}$.

The mechanism in which v_{n+1} joins to the existing vertices will be random but with preference for vertices with lesser degree.
To make things rigorous we need to fix couple of issues:

- How many existing vertices are going to be joined with a new vertex?
 - We will initially consider the case when each new vertex will join only to one existing vertex. Note that this will lead to a tree (good for modeling food-chain network).
 - We will also consider the case when each new vertex is going to join to $m \geq 1$ existing vertices where m will be a fixed positive integer. In this case we can have multiple edges and self-loops depending on the mechanism in which the m new links will be formed. Also there can be formation of cycles. None of these are good for a food-chain network, as A multiplies eats B or A eats itself or even A eats B which eats C but C eats A are not suitable for such a network.
To make things rigorous we need to fix couple of issues:

(i) How many existing vertices are going to be joined with a new vertex?
To make things rigorous we need to fix couple of issues:

(i) How many existing vertices are going to be joined with a new vertex?
 - We will initially consider the case when each new vertex will join only to one existing vertex.
De-Preferential Attachment Random Graphs

- To make things rigorous we need to fix couple of issues:

 (i) How many existing vertices are going to be joined with a new vertex?

 - We will initially consider the case when each new vertex will join only to one existing vertex.
 - Note that this will lead to a tree (good for modeling food-chain network).
To make things rigorous, we need to fix a couple of issues:

(i) How many existing vertices are going to be joined with a new vertex?

- We will initially consider the case when each new vertex will join only to one existing vertex.
- Note that this will lead to a tree (good for modeling food-chain network).
- We will also consider the case when each new vertex is going to join to $m \geq 1$ existing vertices where m will be a fixed positive integer.
To make things rigorous we need to fix couple of issues:

(i) How many existing vertices are going to be joined with a new vertex?

- We will initially consider the case when each new vertex will join only to one existing vertex.
- Note that this will lead to a tree (good for modeling food-chain network).
- We will also consider the case when each new vertex is going to join to \(m \geq 1 \) existing vertices where \(m \) will be a fixed positive integer.
- In this case we can have *multiple edges and self-loops* depending on the mechanism in which the \(m \) new links will be formed. Also there can be formation of cycles.
De-Preferential Attachment Random Graphs

To make things rigorous we need to fix couple of issues:

(i) How many existing vertices are going to be joined with a new vertex?

- We will initially consider the case when each new vertex will join only to one existing vertex.
- Note that this will lead to a tree (good for modeling food-chain network).
- We will also consider the case when each new vertex is going to join to \(m \geq 1 \) existing vertices where \(m \) will be a fixed positive integer.
- In this case we can have *multiple edges* and *self-loops* depending on the mechanism in which the \(m \) new links will be formed. Also there can be formation of cycles.
- None of these are good for a food-chain network, as A multiply eats B or A eats itself or even A eats B which eats C but C eats A are not suitable for such a network.
To make things rigorous we need to fix couple of issues:
To make things rigorous we need to fix couple of issues:

(ii) How do we make the choice de-preferential, that is, not preferring vertices of higher degree?
To make things rigorous we need to fix couple of issues:

(ii) How do we make the choice de-preferential, that is, not preferring vertices of higher degree?

We will consider two types of attachment mechanisms, namely,
To make things rigorous we need to fix couple of issues:

(ii) How do we make the choice *de-preferential*, that is, not preferring vertices of higher degree?

We will consider two types of attachment mechanisms, namely,

<table>
<thead>
<tr>
<th>Linear</th>
<th>Inverse</th>
</tr>
</thead>
</table>

To make things rigorous we need to fix couple of issues:

(ii) How do we make the choice *de-preferential*, that is, not preferring vertices of higher degree?

We will consider two types of attachment mechanisms, namely,

<table>
<thead>
<tr>
<th>Linear</th>
<th>Inverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>probab. \propto const. - degree</td>
<td>probab. \propto 1/degree</td>
</tr>
</tbody>
</table>
1 Introduction
 - A Toy Model for an Ecosystem/Food-Chain
 - De-Preferential Attachment Model

2 Model Description
 - Notations
 - Models for $m = 1$
 - Models for $m > 1$
 - Earlier Work

3 Main Results
 - For the Linear De-Preferential Case
 - For the Inverse De-Preferential Case

4 Techniques Used in the Proofs
 - Linear Case
 - Inverse Case

5 Special Initial Condition

6 Open Problems
Some Notations

- We will denote the growing random graph sequence by \((G_n)_{n \geq 1}\).
Some Notations

- We will denote the growing random graph sequence by \((G_n)_{n \geq 1}\).
- The vertices will be labeled as \(v_1, v_2, \ldots, v_n, \ldots\).
Some Notations

- We will denote the growing random graph sequence by $(G_n)_{n \geq 1}$.

- The vertices will be labeled as $v_1, v_2, \ldots, v_n, \ldots$.

- For $m \geq 1$ we will imagine that v_{n+1} comes with m half-edges, which we will denote by $e_{n+1,1}, e_{n+1,2}, \ldots, e_{n+1,m}$.
Some Notations

- We will denote the growing random graph sequence by \((G_n)_{n \geq 1}\).

- The vertices will be labeled as \(v_1, v_2, \ldots, v_n, \ldots\).

- For \(m \geq 1\) we will imagine that \(v_{n+1}\) comes with \(m\) half-edges, which we will denote by \(e_{n+1,1}, e_{n+1,2}, \ldots, e_{n+1,m}\).

- We will write \(d_i(n + 1, k)\), for \(k = 0, \ldots, m\), to denote the degree of the vertex \(v_i\), \(i = 1, \ldots, n\), after \(k\) half-edges of \(v_{n+1}\) have been attached.
Some Notations

- We will denote the growing random graph sequence by \((G_n)_{n \geq 1}\).

- The vertices will be labeled as \(v_1, v_2, \ldots, v_n, \ldots\).

- For \(m \geq 1\) we will imagine that \(v_{n+1}\) comes with \(m\) half-edges, which we will denote by \(e_{n+1,1}, e_{n+1,2}, \ldots, e_{n+1,m}\).

- We will write \(d_i(n+1, k)\), for \(k = 0, \ldots, m\), to denote the degree of the vertex \(v_i, i = 1, \ldots, n\), after \(k\) half-edges of \(v_{n+1}\) have been attached.

- We will write \(d_i(n+1, 0) = d_i(n)\) for any \(1 \leq i \leq n\) and note \(d_n(n) = m\).
Some Notations

- We will denote the growing random graph sequence by \((G_n)_{n \geq 1}\).

- The vertices will be labeled as \(v_1, v_2, \ldots, v_n, \ldots\).

- For \(m \geq 1\) we will imagine that \(v_{n+1}\) comes with \(m\) half-edges, which we will denote by \(e_{n+1,1}, e_{n+1,2}, \ldots, e_{n+1,m}\).

- We will write \(d_i(n+1,k)\), for \(k = 0, \ldots, m\), to denote the degree of the vertex \(v_i, i = 1, \ldots, n\), after \(k\) half-edges of \(v_{n+1}\) have been attached.

- We will write \(d_i(n+1,0) = d_i(n)\) for any \(1 \leq i \leq n\) and note \(d_n(n) = m\).

- Let \(\left\{\mathcal{F}_{n,k} \mid 0 \leq k \leq m - 1, n \geq 1\right\}\) be the natural filtration of the random attachments.
Some Notations

- We will denote the growing random graph sequence by \((G_n)_{n \geq 1}\).
- The vertices will be labeled as \(v_1, v_2, \ldots, v_n, \ldots\).
- For \(m \geq 1\) we will imagine that \(v_{n+1}\) comes with \(m\) half-edges, which we will denote by \(e_{n+1,1}, e_{n+1,2}, \ldots, e_{n+1,m}\).
- We will write \(d_i(n+1, k)\), for \(k = 0, \ldots, m\), to denote the degree of the vertex \(v_i\), \(i = 1, \ldots, n\), after \(k\) half-edges of \(v_{n+1}\) have been attached.
- We will write \(d_i(n+1, 0) = d_i(n)\) for any \(1 \leq i \leq n\) and note \(d_n(n) = m\).
- Let \(\{\mathcal{F}_{n,k} \mid 0 \leq k \leq m - 1, n \geq 1\}\) be the natural filtration of the random attachments.
- If \(m = 1\) then we will simply write the natural filtration as \(\{\mathcal{F}_n\}_{n \geq 1}\).
Models for $m = 1$

- We start with G_1 which consists of one vertex with one unattached *half-edge*. So $d_1(1) = 1$.

\[
\begin{align*}
\text{Linear De-Preferential Model:} \\
P(v_{n+1} \rightarrow v_i | F_n) \propto (2^n - 1 - d_i(n)) \\
\text{Inverse De-Preferential Model:} \\
P(v_{n+1} \rightarrow v_i | F_n) \propto \frac{1}{d_i(n)} \\
\end{align*}
\]
Models for $m = 1$

- We start with G_1 which consists of one vertex with one unattached half-edge. So $d_1(1) = 1$.

- **Linear De-Preferential Model:**

 \[
 P\left(v_{n+1} \rightarrow v_i \mid F_n\right) \propto ((2n - 1) - d_i(n)),
 \]

 Inverse De-Preferential Model:

 \[
 P\left(v_{n+1} \rightarrow v_i \mid F_n\right) \propto \frac{1}{d_i(n)},
 \]

 that is,

 \[
 P\left(v_{n+1} \rightarrow v_i \mid F_n\right) = \frac{C}{d_i(n)},
 \]

 where $C = D_n = \sum_{i=1}^{n} \frac{1}{d_i(n)}$.

Antar Bandyopadhyay (ISI)
Models for $m = 1$

- We start with G_1 which consists of one vertex with one unattached half-edge. So $d_1(1) = 1$.

- **Linear De-Preferential Model:**

 $$
 P\left(v_{n+1} \rightarrow v_i \mid F_n \right) \propto \left((2n - 1) - d_i(n) \right),
 $$

 that is,

 $$
 P\left(v_{n+1} \rightarrow v_i \mid F_n \right) = \frac{1}{n - 1} \left(1 - \frac{d_i(n)}{2n - 1} \right),
 $$
Models for $m = 1$

- We start with G_1 which consists of one vertex with one unattached half-edge. So $d_1(1) = 1$.

- **Linear De-Preferential Model:**

 $$P \left(v_{n+1} \xrightarrow{} v_i \mid \mathcal{F}_n \right) \propto \left((2n - 1) - d_i(n) \right),$$

 that is,

 $$P \left(v_{n+1} \xrightarrow{} v_i \mid \mathcal{F}_n \right) = \frac{1}{n-1} \left(1 - \frac{d_i(n)}{2n-1} \right),$$

- **Inverse De-Preferential Model:**

 $$P \left(v_{n+1} \xrightarrow{} v_i \mid \mathcal{F}_n \right) \propto \frac{1}{d_i(n)},$$
Models for $m = 1$

- We start with G_1 which consists of one vertex with one unattached half-edge. So $d_1(1) = 1$.

- **Linear De-Preferential Model:**
 \[
P \left(v_{n+1} \rightarrow v_i \mid \mathcal{F}_n \right) \propto \left((2n - 1) - d_i(n) \right),
 \]
 that is,
 \[
P \left(v_{n+1} \rightarrow v_i \mid \mathcal{F}_n \right) = \frac{1}{n-1} \left(1 - \frac{d_i(n)}{2n-1} \right),
 \]

- **Inverse De-Preferential Model:**
 \[
P \left(v_{n+1} \rightarrow v_i \mid \mathcal{F}_n \right) \propto \frac{1}{d_i(n)},
 \]
 that is,
 \[
P \left(v_{n+1} \rightarrow v_i \mid \mathcal{F}_n \right) = \frac{C_n}{d_i(n)},
 \]
 where $C_n^{-1} = D_n = \sum_{i=1}^{n} \frac{1}{d_i(n)}$.

Antar Bandyopadhyay (ISI)
Models for $m > 1$

- We start with G_1 which consists of one vertex with m unattached half-edges. So $d_1(1) = m$.
Models for $m > 1$

- We start with G_1 which consists of one vertex with m unattached *half-edges*. So $d_1(1) = m$.

- At time $n + 1$, the new vertex v_{n+1} comes with m half-edges, namely, $e_{n+1,1}, e_{n+1,2}, \ldots, e_{n+1,m}$, which are joined **sequentially by updating the degrees of the existing vertices** and are not allowed to join to v_{n+1}.
Models for $m > 1$

- We start with G_1 which consists of one vertex with m unattached half-edges. So $d_1(1) = m$.

- At time $n + 1$, the new vertex v_{n+1} comes with m half-edges, namely, $e_{n+1,1}, e_{n+1,2}, \ldots, e_{n+1,m}$, which are joined sequentially by updating the degrees of the existing vertices and are not allowed to join to v_{n+1}.

- This prevents the formation of the self-loops.
Models for $m > 1$

- We start with G_1 which consists of one vertex with m unattached half-edges. So $d_1(1) = m$.

- At time $n + 1$, the new vertex v_{n+1} comes with m half-edges, namely, $e_{n+1,1}, e_{n+1,2}, \ldots, e_{n+1,m}$, which are joined sequentially by updating the degrees of the existing vertices and are not allowed to join to v_{n+1}.

- This prevents the formation of the self-loops.

- We still have the possibility of having multiple edges between two vertices.
Models for $m > 1$

- **Linear De-Preferential Model:**

\[
P\left(e_{n+1,k+1} = \{v_j, v_{n+1}\} \mid \mathcal{F}_{n+1,k} \right) = \frac{1}{n-1} \left(1 - \frac{d_j(n+1, k)}{k + (2n-1)m} \right)
\]
Models for $m > 1$

- **Linear De-Preferential Model:**

 \[
 P \left(e_{n+1,k+1} = \{ v_j, v_{n+1} \} \mid \mathcal{F}_{n+1,k} \right) = \frac{1}{n-1} \left(1 - \frac{d_j(n+1, k)}{k + (2n-1)m} \right)
 \]

- **Inverse De-Preferential Model:**

 \[
 P \left(e_{n+1,k+1} = \{ v_j, v_{n+1} \} \mid \mathcal{F}_{n+1,k} \right) = C_{n+1,k} \frac{1}{d_j(n+1, k)}
 \]

 where \(C_{n+1,k}^{-1} =: D_{n+1,k} = \sum_{j=1}^{n} \frac{1}{d_j(n+1, k)}. \)
A somewhat similar, in fact a bit more general model was considered by Sevim and Rikvold (2006, 2008).
Some Earlier Work

- A somewhat similar, in fact a bit more general model was considered by Sevim and Rikvold (2006, 2008).

- They obtain by some intuitive arguments (not quite rigorous) the asymptotic degree distribution and validated their claims by simulation results.
A somewhat similar, in fact a bit more general model was considered by Sevim and Rikvold (2006, 2008).

They obtain by some intuitive arguments (not quite rigorous) the asymptotic degree distribution and validated their claims by simulation results.

Our results support their observations.
1 Introduction
 • A Toy Model for a Ecosystem/Food-Chain
 • De-Preferential Attachment Model

2 Model Description
 • Notations
 • Models for $m = 1$
 • Models for $m > 1$
 • Earlier Work

3 Main Results
 • For the Linear De-Preferential Case
 • For the Inverse De-Preferential Case

4 Techniques Used in the Proofs
 • Linear Case
 • Inverse Case

5 Special Initial Condition

6 Open Problems
Main Results: Linear Case with $m = 1$

Theorem 1 (WLLN for fixed vertex degree)

Fix a vertex $i \geq 1$ then

$$\frac{d_i(n)}{\log n} \overset{P}{\longrightarrow} 1.$$
Main Results: Linear Case with $m = 1$

Theorem 1 (WLLN for fixed vertex degree)
Fix a vertex $i \geq 1$ then

$$\frac{d_i(n)}{\log n} \xrightarrow{P} 1.$$

Theorem 2 (CLT for fixed vertex degree)
Fix a vertex $i \geq 1$ then

$$\frac{d_i(n) - \log n}{\sqrt{\log n}} \xrightarrow{d} \text{Normal} (0, 1).$$
Main Results: Linear Case with $m = 1$

Theorem 3 (Asymptotic degree distribution)

Let $P_k(n)$ be the proportion of vertices in G_n with degree $k \geq 1$. Then for any $k \geq 1$,

$$P_k(n) \xrightarrow{} \frac{1}{2^k} \text{ a.s.}$$
Main Results: Linear Case with $m = 1$

Theorem 3 (Asymptotic degree distribution)

Let $P_k(n)$ be the proportion of vertices in G_n with degree $k \geq 1$. Then for any $k \geq 1$,

$$P_k(n) \to \frac{1}{2^k} \text{ a.s.}$$

Remark: The asymptotic degree distribution of G_n is Geometric $(\frac{1}{2})$ which has mean 2, mode 1 and exponential tail.
Main Results: Linear Case with $m = 1$

Theorem 4 (Asymptotic degree distribution of the chosen vertex)

Let U_{n+1} be the (random) selected vertex from $\{v_1, v_2, \ldots, v_n\}$ where the new vertex v_{n+1} connects. Then for any $k \geq 1$,

$$
P(\text{degree}_{G_n}(U_{n+1}) = k) \rightarrow \frac{1}{2^k}.
$$
Main Results: Linear Case with $m \geq 1$

Theorem 5 (WLLN for fixed vertex degree)

Fix a vertex $i \geq 1$ then

$$\frac{d_i(n)}{\log n} \xrightarrow{P} m.$$
Main Results: Linear Case with $m \geq 1$

Theorem 5 (WLLN for fixed vertex degree)

Fix a vertex $i \geq 1$ then

$$\frac{d_i(n)}{\log n} \xrightarrow{P} m.$$

Theorem 6 (CLT for fixed vertex degree)

Fix a vertex $i \geq 1$ then

$$\frac{d_i(n) - m \log n}{\sqrt{m \log n}} \xrightarrow{d} \text{Normal (0, 1)}.$$
Main Results: Inverse Case with $m = 1$

Theorem 7 (SLLN for fixed vertex degree)

Fix a vertex $i \geq 1$ then

$$\frac{d_i(n)}{\sqrt{\log n}} \rightarrow \sqrt{\frac{2}{\lambda^*}} \quad \text{a.s.,}$$

where $\lambda^* > 0$ is the unique positive solution of the equation

$$\sum_{n=1}^{\infty} \prod_{i=1}^{n} \frac{1}{1 + i\lambda^*} = 1.$$
Main Results: Inverse Case with $m = 1$

Theorem 8 (Asymptotic degree distribution)

Let $P_k(n)$ be the proportion of vertices in G_n with degree $k \geq 1$. Then for any $k \geq 1$,

$$P_k(n) \rightarrow k\lambda^* \prod_{i=1}^{k} \frac{1}{i\lambda^* + 1} \text{ a.s.}$$

Remark: The asymptotic degree distribution of G_n has mean 2, mode 1 and thin tail.
Main Results: Inverse Case with $m = 1$

Theorem 8 (Asymptotic degree distribution)

Let $P_k(n)$ be the proportion of vertices in G_n with degree $k \geq 1$. Then for any $k \geq 1$,

$$P_k(n) \rightarrow k \lambda^* \prod_{i=1}^{k} \frac{1}{i \lambda^* + 1} \text{ a.s.}$$

Remark: The asymptotic degree distribution of G_n has mean 2, mode 1 and thin tail.
Main Results: Inverse Case with $m = 1$

Theorem 9 (Asymptotic degree distribution of the chosen vertex)

Let U_{n+1} be the (random) selected vertex from $\{v_1, v_2, \ldots, v_n\}$ where the new vertex v_{n+1} connects. Then for any $k \geq 1$,

$$
P \left(\text{degree}_{G_n} (U_{n+1}) = k \right) \rightarrow \prod_{i=1}^{k} \frac{1}{i\lambda^* + 1}.$$

Main Results: Inverse Case with $m > 1$

Theorem 10 ("WLLN" for fixed vertex degree)

There exist constants $0 < C_1 < C_2 < \infty$ such that for any fixed vertex i,

$$
P \left(C_1 \leq \frac{d_i(n)}{m\sqrt{\log n}} \leq C_2 \right) \to 1,
$$

as $n \to \infty$.

Techniques Used in the Proofs

1 Introduction
- A Toy Model for a Ecosystem/Food-Chain
- De-Preferential Attachment Model

2 Model Description
- Notations
- Models for $m = 1$
- Models for $m > 1$
- Earlier Work

3 Main Results
- For the Linear De-Preferential Case
- For the Inverse De-Preferential Case

4 Techniques Used in the Proofs
- Linear Case
- Inverse Case

5 Special Initial Condition

6 Open Problems
Techniques Used for the Linear De- Preferential Case

- This is similar to the preferential attachment random graph models and the main tools are martingale techniques.
This is similar to the preferential attachment random graph models and the main tools are martingale techniques.

In this case $m = 1$ and $m > 1$ are not much different.
Techniques Used for the Linear De-Preferential Case

- This is similar to the preferential attachment random graph models and the main tools are martingale techniques.

- In this case $m = 1$ and $m > 1$ are not much different.

- For the CLTs we use martingale CLT.
Techniques Used for the Inverse De-Preferential Case

- We used two different *embeddings/couplings* for this case.
Techniques Used for the Inverse De-Preferential Case

- We used two different embeddings/couplings for this case.
- One type of embedding for $m = 1$ and a different embedding for $m > 1$.
Techniques Used for the Inverse De-Preferential with \(m = 1 \)

- We consider a continuous time age dependent branching process and keep all the statistics, that is, entire growing tree structure.
Techniques Used for the Inverse De-Preferential with $m = 1$

- We consider a continuous time age dependent branching process and keep all the statistics, that is, entire growing tree structure.

- Formally, let \mathcal{G} be the set of all finite rooted tree. We consider a continuous time process $\{\Upsilon(t) : t \geq 0\}$ of randomly growing trees on \mathcal{G}.
Techniques Used for the Inverse De- Preferential with $m = 1$

- We consider a continuous time age dependent branching process and keep all the statistics, that is, entire growing tree structure.
- Formally, let G be the set of all finite rooted tree. We consider a continuous time process $\{\Upsilon(t) : t \geq 0\}$ of randomly growing trees on G.
- $\Upsilon(0)$ is a single vertex (root) with a half-edge (so degree is 1).
Techniques Used for the Inverse De-Preferential with $m = 1$

- We consider a continuous time age dependent branching process and keep all the statistics, that is, entire growing tree structure.

- Formally, let G be the set of all finite rooted tree. We consider a continuous time process $\{\Upsilon(t) : t \geq 0\}$ of randomly growing trees on G.

- $\Upsilon(0)$ is a single vertex (root) with a half-edge (so degree is 1).

- Each vertex reproduces independently according to identical copies of a age dependent pure birth process $(\xi(t))_{t \geq 0}$ such that $\mathbb{P}(\xi(0) = 1) = 1$ and

$$
\mathbb{P}\left(\xi(t + h) = k + 1 \mid \xi(t) = k\right) = \frac{h}{k + 1} + o(h).
$$
Techniques Used for the Inverse De-Preferential with $m = 1$

- We consider a continuous time age dependent branching process and keep all the statistics, that is, entire growing tree structure.

- Formally, let G be the set of all finite rooted tree. We consider a continuous time process $\{\Upsilon(t) : t \geq 0\}$ of randomly growing trees on G.

- $\Upsilon(0)$ is a single vertex (root) with a half-edge (so degree is 1).

- Each vertex reproduces independently according to identical copies of a age dependent pure birth process $(\xi(t))_{t \geq 0}$ such that $P(\xi(0) = 1) = 1$ and

$$P(\xi(t + h) = k + 1 \mid \xi(t) = k) = \frac{h}{k + 1} + o(h).$$

- This process is an example of a Crump-Mode-Jagers (CMJ) branching process [Crump and Mode (1968) and Jagers (1969)].
Techniques Used for the Inverse De- Preferential with $m = 1$

Embedding Theorem for $m = 1$

Starting with $\tau_1 = 0$ consider the following sequence of stopping times

$$\tau_n := \inf\{t \geq \tau_{n-1} \mid |\mathcal{Y}(t)| = n\}.$$

For $m = 1$, the sequence of random graphs $\{G_n\}_{n=1}^\infty$ have the same distribution as the sequence of random trees $\{\mathcal{Y}(\tau_n)\}_{n=1}^\infty$.

Remarks:
(i) This is immediate from the construction of the CMJ branching process.
(ii) For studying preferential attachment model with non-linear weights a similar observation was made by Rudas and Tóth (2007).
Techniques Used for the Inverse De-Preferential with $m = 1$

Embedding Theorem for $m = 1$

Starting with $\tau_1 = 0$ consider the following sequence of stopping times

$$
\tau_n := \inf \{ t \geq \tau_{n-1} \mid |\Upsilon(t)| = n \}.
$$

For $m = 1$, the sequence of random graphs $\{G_n\}_{n=1}^{\infty}$ have the same distribution as the sequence of random trees $\{\Upsilon(\tau_n)\}_{n=1}^{\infty}$.

Remarks:

(i) This is immediate from the construction of the CMJ branching process.
Techniques Used for the Inverse De-Preferential with $m = 1$

Embedding Theorem for $m = 1$

Starting with $\tau_1 = 0$ consider the following sequence of stopping times

$$\tau_n := \inf\{t \geq \tau_{n-1} \mid |\Upsilon(t)| = n\}.$$

For $m = 1$, the sequence of random graphs $\{G_n\}_{n=1}^{\infty}$ have the same distribution as the sequence of random trees $\{\Upsilon(\tau_n)\}_{n=1}^{\infty}$.

Remarks:

(i) This is immediate from the construction of the CMJ branching process.

(ii) For studying preferential attachment model with non-linear weights a similar observation was made by Rudas and Tóth (2007).
Techniques Used in the Proofs
Inverse Case

Techniques Used for the Inverse De-Preferential with $m = 1$

- Let $\hat{\rho}(\lambda)$ be the expected Laplace transform of the pure birth process $(\xi(t))_{t \geq 0}$.

$\hat{\rho}(\lambda) = \sum_{n=1}^{\infty} n \prod_{i=1}^{n} \frac{1}{i \lambda + 1}$.

Thus $\hat{\rho}(\lambda) = 1$ has a unique positive solution which we denote by $\lambda^* > 0$. λ^* is called the Malthusian parameter for the (supercritical) CMJ process.
Techniques Used for the Inverse De-Preferential with \(m = 1 \)

- Let \(\hat{\rho}(\lambda) \) be the expected Laplace transform of the pure birth process \((\xi(t))_{t \geq 0}\).

- Then it is easy to see that

\[
\hat{\rho}(\lambda) = \sum_{n=1}^{\infty} \prod_{i=1}^{n} \frac{1}{i \lambda + 1}.
\]
Techniques Used for the Inverse De-Preferential with $m = 1$

- Let $\hat{\rho}(\lambda)$ be the expected Laplace transform of the pure birth process $(\xi(t))_{t \geq 0}$.

- Then it is easy to see that

$$\hat{\rho}(\lambda) = \sum_{n=1}^{\infty} \prod_{i=1}^{n} \frac{1}{i\lambda + 1}.$$

- Thus $\hat{\rho}(\lambda) = 1$ has a unique positive solution which we denote by λ^*.

Techniques Used for the Inverse De-Preferential with $m = 1$

- Let $\hat{\rho}(\lambda)$ be the expected Laplace transform of the pure birth process $(\xi(t))_{t \geq 0}$.

- Then it is easy to see that

$$\hat{\rho}(\lambda) = \sum_{n=1}^{\infty} \prod_{i=1}^{n} \frac{1}{i\lambda + 1}.$$

- Thus $\hat{\rho}(\lambda) = 1$ has a unique positive solution which we denote by λ^*.

- $\lambda^* > 0$ is called the *Malthusian parameter* for the (supercritical) CMJ process.
Techniques Used for the Inverse De-Preferential with $m = 1$

Theorem A of Nerman (1961)

Suppose $\{\Upsilon(t) : t \geq 0\}$ is a (supercritical) CMJ process with Multhusian parameter λ^* and let $\phi : G \rightarrow \mathbb{R}$ be bounded function. Then the following limit holds almost surely

$$
\lim_{t \to \infty} \frac{1}{|\Upsilon(t)|} \sum_{x \in \Upsilon(t)} \phi(\Upsilon(t)_{\downarrow x}) = \lambda^* \int_0^\infty \exp\{-\lambda^* t\} E(\phi(\Upsilon(t))) dt,
$$

where for a tree $T \in G$ and a vertex $x \in T$ we define $T_{\downarrow x}$ as the sub-tree rooted at x consisting of all the descendants of x.

Remark: This proves the SLLN for the degree of a fixed vertex and also the asymptotic degree distribution in the inverse de-preferential case.
Techniques Used for the Inverse De-Preferredential with $m = 1$

Theorem A of Nerman (1961)

Suppose $\{\Upsilon(t) : t \geq 0\}$ is a (supercritical) CMJ process with Multhusian parameter λ^* and let $\phi : G \rightarrow \mathbb{R}$ be bounded function. Then the following limit holds almost surely

$$\lim_{t \to \infty} \frac{1}{|\Upsilon(t)|} \sum_{x \in \Upsilon(t)} \phi(\Upsilon(t) \downarrow x) = \lambda^* \int_0^\infty \exp\{-\lambda^* t\} \mathbb{E}(\phi(\Upsilon(t))) dt,$$

where for a tree $T \in G$ and a vertex $x \in T$ we define $T \downarrow x$ as the sub-tree rooted at x consisting of all the descendants of x.

Remark: This proves the SLLN for the degree of a fixed vertex and also the asymptotic degree distribution in the inverse de-preferential case.
Techniques Used for the Inverse De-Preferential with $m > 1$

- For this we use a different technique similar to the *Athreya-Karlin Embedding*.

\[\text{Techniques Used in the Proofs} \quad \text{Inverse Case} \]
Techniques Used for the Inverse De-Preferential with $m > 1$

- For this we use a different technique similar to the *Athreya-Karlin Embedding*.
- Let $\{Z(t) : t \geq 0\}$ be a pure birth process with $P(Z(0) = m) = 1$ and birth rates $\lambda_i = \frac{1}{i}$.
Techniques Used for the Inverse De-Preferential with $m > 1$

- For this we use a different technique similar to the *Athreya-Karlin Embedding*.
- Let $\{Z(t) : t \geq 0\}$ be a pure birth process with $P(Z(0) = m) = 1$ and birth rates $\lambda_i = \frac{1}{i}$.
- For $i \geq 1$, let $(Z_i(t))_{t \geq 0}$ be i.i.d. copies of the pure birth process $(Z(t))_{t \geq 0}$.
Techniques Used for the Inverse De-Preferential with $m > 1$

- For this we use a different technique similar to the Athreya-Karlin Embedding.

- Let $\{Z(t) : t \geq 0\}$ be a pure birth process with $P(Z(0) = m) = 1$ and birth rates $\lambda_i = \frac{1}{i}$.

- For $i \geq 1$, let $(Z_i(t))_{t \geq 0}$ be i.i.d. copies of the pure birth process $(Z(t))_{t \geq 0}$.

- We recursively define the following stopping times starting with $\tau_1 = 0$,

 \[
 \begin{align*}
 \tau_2 &:= \inf \left\{ t \geq 0 \mid Z_1(t) - m = m \right\} \\
 \tau_3 &:= \inf \left\{ t \geq \tau_2 \mid Z_1(t) + Z_2(t - \tau_2) - 2m = m \right\} \\
 &\vdots \\
 \tau_{n+1} &:= \inf \left\{ t \geq \tau_n \mid Z_1(t) + Z_2(t - \tau_2) + \cdots + Z_n(t - \tau_n) - nm = m \right\}
 \end{align*}
 \]
Techniques Used for the Inverse De-Preferential with $m > 1$

Embedding Theorem for $m > 1$

For $m \geq 1$, the two sequence of random variables, namely, $\{ (d_i(n))_{i=1}^n \mid n \geq 1 \}$ and $\{ (Z_i(\tau_n - \tau_i))_{i=1}^n \mid n \geq 1 \}$ has the same distribution.
Techniques Used for the Inverse De-Preferential with $m > 1$

Embedding Theorem for $m > 1$

For $m \geq 1$, the two sequence of random variables, namely, $\{(d_i(n))_{i=1}^n \mid n \geq 1\}$ and $\{(Z_i(\tau_n - \tau_i))_{i=1}^n \mid n \geq 1\}$ has the same distribution.

WLLN for the Pure Birth Process

Let $\{Z(t) : t \geq 0\}$ be a pure birth process with $P(Z(0) = m) = 1$ and birth rates $\lambda_i = \frac{1}{i}$. Then

$$\frac{Z(t)}{\sqrt{t}} \xrightarrow{P} \sqrt{2}.$$
1 Introduction
 • A Toy Model for a Ecosystem/Food-Chain
 • De-Preferential Attachment Model

2 Model Description
 • Notations
 • Models for $m = 1$
 • Models for $m > 1$
 • Earlier Work

3 Main Results
 • For the Linear De-Preferential Case
 • For the Inverse De-Preferential Case

4 Techniques Used in the Proofs
 • Linear Case
 • Inverse Case

5 Special Initial Condition

6 Open Problems
The special initial configuration we have chosen is not necessary to derive most of the results.
The special initial configuration we have chosen is not necessary to derive most of the results.

For example all results in the linear case go through for starting with any finite graph.
The special initial configuration we have chosen is not necessary to derive most of the results.

For example all results in the linear case go through for starting with any finite graph.

But it is necessary assumption for the results on inverse case which we prove using the embedding to CMJ branching process.
Introduction

1. A Toy Model for a Ecosystem/Food-Chain
2. De-Preferential Attachment Model

Model Description

- Notations
- Models for $m = 1$
- Models for $m > 1$
- Earlier Work

Main Results

- For the Linear De-Preferential Case
- For the Inverse De-Preferential Case

Techniques Used in the Proofs

- Linear Case
- Inverse Case

Special Initial Condition

Open Problems
The main question which remains open, is the asymptotic degree distribution for $m > 1$ case. Particularly, for the inverse de-preferential model.
The main question which remains open, is the asymptotic degree distribution for $m > 1$ case. Particularly, for the inverse de-preferential model.

There is a formula derived by non-rigorous methods [Sevim and Rikvold (2008)] which can be validated by simulation but no rigorous proof is available.
The main question which remains open, is the asymptotic degree distribution for \(m > 1 \) case. Particularly, for the inverse de-preferential model.

There is a formula derived by non-rigorous methods [Sevim and Rikvold (2008)] which can be validated by simulation but no rigorous proof is available.

For \(m > 1 \) case it seems that the Athreya-Karlin Embedding technique is fairly unsatisfactory for the inverse de-preferential case. Proofs of a complete WLLN and CLT remain open for the degree of a fixed vertex.
The main question which remains open, is the asymptotic degree distribution for $m > 1$ case. Particularly, for the inverse de-preferential model.

There is a formula derived by non-rigorous methods [Sevim and Rikvold (2008)] which can be validated by simulation but no rigorous proof is available.

For $m > 1$ case it seems that the Athreya-Karlin Embedding technique is fairly unsatisfactory for the inverse de-preferential case. Proofs of a complete WLLN and CLT remain open for the degree of a fixed vertex.

For $m = 1$ case one should remove the dependency on the initial configuration but it seems it is a technically very difficult problem!
Thank You