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A generalised coding scheme is proposed for two-tone image contours. The basic idea is to 
detect digital line segments on the contour and code them using fixed length or variable length 
codewords. It can be shown that the conventional contour run length coding using 8 or 4 
direction Freeman's chain code is a special case of the present scheme. The data compressibil- 
ity is tested on several closed contours and their noisy degraded versions. The effect of gradual 
increases of noise level on the relative compressibility with respect to the conventional method 
is also studied, Extension of the work has also been proposed. +~ 1985 Academic Press, Inc. 

I. INTRODUCTION 

Contour  run length coding (CRLC) is one of the popular error-free coding 
techniques for two-tone image data compression [1]. To this end it is convenient to 
represent the image contour pels in the form of a string using Freeman's  direction 
codes [2]. Either 4-direction or 8-direction Freeman chain codes can be used, but the 
8-direction codes are more popular. A full-fledged scheme for contour tracing and 
C R L C  scheme has been reported by Morrin [3]. 

The present work is a generalisation of CRLC. It is easy to see that the algorithm 
for conventional CRLC with 4 or 8-direction codes looks for straight line segments 
of the contour with resolution 90 ° or 45 ° and code them using fixed length or more 
efficient variable length codewords. It is shown that the algorithm may be gener- 
alised to include digital straight line segments with finer resolution as well. The 
different digital straight line segments can be identified either from the properties 
given by Freeman [4] and Rosenfeld [5, 6] or from the algorithm given by Brons [7] 
and Wu [8]. Although the coding technique is more expensive, better data compres- 
sion is possible by this scheme. The scheme is equally applicable to raw digital 
outline or the polygonal approximation of a contour in least mean squared error 
sense. 

The scheme, named as digital line segment coding (DLSC) is explained in Section 
II. In Section I I I  the results of using DLSC to some two-tone image contours are 
presented. A few of the contours are subject to random noise and the results of using 
DLSC to them are given. 

II. DLSC SCHEME 

If  represented in the 8-direction Freeman chain code an arc or a string of such 
code is a valid digital straight line segment under certain conditions. The first two of 
the three conditions stated by Freeman [4] are 

(1) At most  two basic directions are present in the string and these differ only 
by unity, modulo  eight. 

(2) If  there are two directions, one of them always occurs singly. 
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Rosenfeld [5] defined a chord property and proved that the necessary and sufficient 
condition for a chain code being the chain code of a line is the chord property. 

Our aim is to detect the different line segments on a contour and code them 
unambiguously. However, it is not possible to look for lines with any degree of 
angular resolution because of its unlimited searching expenses and code size. We 
shall restrict ourselves to digital line segments with slopes +_l / (m + 1), _+(m + 
1), +_m/(m + 1), + ( m  + 1 ) / m  in digital grid where m is a positive integer. 

Let P and Q be the two basic directions satisfying condition (1) of which Q 
occurs singly as in condition (2) given above. For a positive integer m, let m P Q  

denote m successive occurences of P followed by the occurence Q in a string. For 
the kind of line segments being considered, m P Q  represents a smallest string that 
repeats along the line segment. We call mPQ as the representation of a line segment 
(LS) unit. Clearly, QmP is also the representation of the same LS unit. Also, when 
m = 0, the distinction between P and Q is meaningless and either P or Q represents 
an LS unit. No other form of LS unit is allowed in the present case although other 
valid LS units are possible. Furthermore, let us assume for convenience that each 
valid line segment consists of integer multiples of a LS unit only. 

DEFINITION 1. A dosed contour is a finite string of pels such that if a pel is in 
the contour then two and only two of its eight neighbouring pels are also in the 
contour. On the other hand, any open contour is a finite string of pels satisfying the 
above condition except only at two pels, each of which has only one neighbour pel in 
the contour. 

Clearly, a comer sharper than 90 ° in the conventional 8-direction line segment 
sense is not allowed by the definition. Also, the contours having nodes and branches 
are not accounted for simplicity. Relaxation of these constraints will be discussed in 
Section I |I .  

Each codeword consists of three code subwords namely, subword for absolute or 
relative direction of (i.e., the direction of the present line segment with respect to the 
immediate past) line segment, subword for the LS unit spanning the line segment, 
and subword for the number of times the LS unit is repeated along the line segment 
(i.e., run length). Let these subwords be denoted by A, B, and C, respectively. 

The number of relative directions for subword A can be limited to five. The 
matter is explained in Fig. la, where u and v denote the last two pels of the previous 
line segment. The current line segment may start from v along one of the five 
possible directions a(1), a(2), a(3), a(4), and a(5) making angles 0 °, + 45 °, + 90 °, 
- 4 5  °, and - 9 0  °, respectively, to the uv direction. For m = 0, a(1) cannot occur. 
For subword B, the LS unit of the current line segment is to be coded. If there are 
mPQ,  m = O, 1 . . . . .  n possible LS units of which each unit mPQ, rn = 2, 3 . . . .  , n 

has two possible variations m P Q  and QmP as shown in Fig. lb, then the total 
number of possibilities to be encoded is 2n. In addition, the direction of Q with 
respect to P or vice versa is to be encoded. Since the directions of P and Q differ by 
unity, modulo eight, there are two possibilities--one in + 45 ° and the other in - 4 5  ° 
as shown in Fig. lc. It is to be noted that the subword B is not necessary for CRLC 
(when m = 0), since only LS unit P is used to denote digital lines. For subword C 
the number of possibilities to be encoded is equal to the length of the longest run in 
the contour. 

The coding strategy is as follows. Start with n = 0 and code the outline. Next, 
increase n by 1 in stages and at each stage code the outline. Finally, choose the value 
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FIG. 1. (a) Possible directions of starting a new line segment unit. (b) Representation of a line 
segment  by mPQ or QmP unit (here m = 2). (c) Possible relative directions of Q with respect to P. 

of n for which the total bit requirement is minimum and store the code book as well 
as the coded outline. 

To proceed further one should specify the kind of codebook to be used. At first, 
the simple fixed length code is discussed below. 

For  better compression using fixed length codewords let us consider subwords A 
and B together. For A there are 5 possibilities to be encoded. For B it should be 
noted that rnPQ = QmP, m = 0,1. Also, for m = 0, the direction of Q with respect 
to P is meaningless. Considering the redundancy, we can easily see that the total 
number  of possibilities to be encoded is [(n - 1)4 + 1 + 2]5 = (4n - 1)5 for n > 1. 
Simple binary code requires q, bits, where q, is the smallest integer greater than or 
equal to log2(4n - 1)5. The length of code subword C is r,, where r, is the smallest 
integer greater than or equal to log2Rma x, where Rma x denote the maximum possible 
run length in a contour. 

If there are L, i  possible line segments in the ith outline and if K bits are required 
to represent the beginning of each outline then the total number of bits required is 

N 

B. = Y] [K +(q. + r.)L.i ] . . . ,  (1) 
i = l  

where N is the number of outlines in a picture frame. The strategy is to choose n for 
which B. is minimum. Clearly, the scheme is at least as compressible as the CRLC 
scheme. 

We define the compression ratio of DLSC scheme as 

Total no. of pels in the picture 
8DLSC = No. of bits required to represent picture in DLSC 

If the two tone picture matix is of size M × M then 

M 2 

~DLSC = N " ' "  " ( 2 )  

E [ K + ( q . + r . ) L i ]  
i=1  
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Similarly, for conventional CRLC scheme 

M 2 
ACRLC ---- . . .  N 

g [K +(p.  + r.)L:] 
i=1 

(3) 

where L~ is the number of runs present in the ith contour and p,, is the number of 
bits required to represent the different directions of the Freeman chain code. The 
relative compression ratio of DLSC in comparison to CRLC is defined as 

~rel = ~DLSC//~CRLC = 

NK + 
N 

~_, (p, + r.)L~ 
i = l  

N 

NK + Z (q. + r~)Li 
i=1 

(4) 

There are different types of variable length codes. The basic idea of all these codes 
is to assign smaller codewords for more frequent events. The Huffman code [9] is one 
of the most efficient among the variable length codes where the average codeword 
size is found from the entropy. Let P(a(i), re(j), b(k), 1) denote the probability of 
a line segment starting at a(i) relative direction having m(j ) th  among the 2n 
possible direction units with b(k)th relative direction of Q with respect to P (or vice 
versa) and run length I. Then the entropy/4, of fine segments in the contour is 

1t, = - F . . p ( a ( i ) , m ( j ) , b ( k ) , l ) l o g : p ( a ( i ) , m ( j ) , b ( k ) , l ) . . . ,  (5) 

where the summation extends over all the possibilities of a(i), m(j) ,  b(k), and I. 
The average codeword D, of a line segment using Huffman code is limited by 

H . < _ D . < H . +  I . . . .  (6) 

Here again the coding strategy is to choose n for which D.L. is minimum, where L. 
the number of line segments in the contour using LS units admissible by rn = 
0, 1 , . . . ,  n. 

In general, the compressibility by Huffman code is better than that by ordinary 
fixed length binary code. But if the plot of p(a(i), m(j), b(k), l) is fiat over i, j ,  k, 
and 1, the fixed length code is nearly as efficient as Huffman code. In such case, it is 
useful to construct the codebook with those variables for which the probability plot 
is not fiat. The rest of the variables may be coded using fixed length coding scheme. 
For example, here the Huffman code may be used only for the run length 1 while 
a(i), re(j), and b(k) may be fixed-length coded. Such hybrid techniques has the 
advantage of smaller codebook size without appreciable sacrifice in the data com- 
pression. 

III. RESULTS AND DISCUSSION 

The present scheme is tested on the digitised contours of a butterfly, a chro- 
mosome a contour map, a handwritten numeral 8, and the outlines of three lakes 
given, respectively, in Figs. (2-5) and Figs. (6-8). Both fixed length and variable 
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FIG. 2. Digitised outline of a butterfly. 

length binary coding scheme as used to compare the data bits required in each case. 
In the fixed length scheme, the subword for run length is such that maximum run 
along any direction may be represented. For contours of Figs. (2-8)  it is found that 
maximum run length is 9. Hence 4 bits are allotted for subword C. For n = 0, two 
bits are used to represent the relative direction of the runs. This is so because 
according to Definition 1 four relative directions at +45  ° and + 9 0  ° are only 
possible for the runs. For variable length scheme it is found that the probability plot 
of p(a(i), re(j), b(k), 1) is quite fiat. On the other hand, the probability plot of p(l) 
is nearly exponentially decaying with/ .  Hence the run length l has been coded using 
Huffman's scheme while a(i), re(j), b(k) use fixed length subwords. Each figure is 
treated separately for coding 1. However, it is found that the Huffman subword is 
same for all the figures. 

The total number of bits required to represent the contours are plotted against n, 
for fixed length and variable length coding scheme. The plots are given in Figs. 9 and 
10, respectively. It is seen that the minimum occurs at n = 3 for all the contours in 
case of fixed length coding scheme. In the variable length coding scheme, however, 
the minimum occurs at n = 1 for the butterfly contour and at n = 0 for lake I. For 
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the other contours the minimum is at n = 3. Each minimum of Fig. 9 is less than the 
corresponding minimum of Fig. 10. 

The efficiency of the generalised scheme has been tested on noisy data as well. The 
procedure of generating noisy outline is similar to that given in [11]. The procedure 
is briefly described below. 

Let X, be any arbitrary point on the boundary whose adjacent vertices are Xi_ 1 
and X~+ 1. Let the centroid of the triangle X,_ 1Xi X,+ 1 by Y~. Then due to noise 
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FIG. 6. (a) Digitised outline of the lake (I). (b) The same outline when noisily degraded (02 = 6.25). 
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perturbation the point  X~ is displaced to a new posit ion Z~, which is on  the line 
jo in ing  Xi and Y,, where 

z , =  + x,) 

and 3~ is a guass ian r andom variable of  mean  zero and variance o 2. When 0 < 3~ < 1 
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the point Z~ lies on line between X i and Y,. Whenever X is negative or greater than 
unity, the point lies on the infinite line joining X~ and Y~ but not between them. 

For  a given o 2 the random purturbation X was made on different evenly spaced 
points of the contour. The whole procedure was repeated for different values of a 2 
to generate noisy boundaries at different noise levels. This procedure ensures a 
global and local deformation of the boundary for moderate to fairly large noise level. 
Some ideal outlines and their noisy versions are shown in Figs. 6a-8a  and Figs. 
6b-8b,  respectively. The outlines and their noisy versions for different 0 2 were 
subject to CRLC and DLSC. The results are plotted in Fig. 11 as 8re ~ against e. It is 
seen for all the oudines, that at first 8re I decreases rapidly with o. The rate of 
decrease is less for moderate a, even it may be negative. This is apparently because 
excessive noise changes the outline and its line segment statistics appreciably 
resulting, sometimes, in the improvement also. 

A discussion of contour branching is in order. The roots of the branching may be 
found as in Morrin's scheme [3]. Taking each root as starting point, all contours may 
be traversed and coded so that no contour is encountered twice. 

For  digital contour with pels having more than two neighbours, an extra bit may 
be used to indicate them. Such extra bit may be necessary for branched contours, 
especially for coding the portion of the contour near the root. 

The direct extension of the work to 3-dimensional contour can be done in a 
tomographic fashion, i.e., taking 2-dimensional slices of the 3-dimensional contour. 
For  better compression, however, it may be useful to encode digital planer surfaces. 
The problem is being studied currently in the present laboratory and the useful 
results will be communicated in future. 
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