1. Suppose the following non-deterministic finite automaton (NFA) is converted to an equivalent deterministic finite automaton (DFA) using the standard algorithm. [4]

```
q0 0 0,1 1
start q1 0,1
q2
```

Determine whether each of the following statements is true or false.

(a) \(\delta(\{q_1\}, 0) = \{q_1, q_2\} \). TRUE / FALSE

(b) \(\delta(\{q_2\}, 0) = \emptyset \). TRUE / FALSE

(c) The state \(\{q_0, q_2\} \) is unreachable. TRUE / FALSE

(d) The state \(\{q_0, q_1, q_2\} \) is a final state. TRUE / FALSE

2. Write down the regular expression for hexadecimal numbers in C. [4]

Answer:

```
0p\[j\][p is prime]
```

3. The language \(L = \{0^p | p \text{ is prime } \} \) is not regular. If you have to prove this using the Pumping Lemma, how many times should you pump \(v \)? Your answer should be in terms of the lengths of \(u, v, w \) (\(u, v, w \) have their usual significance). [6]

Answer:

P.T.O.
4. Let $M_1 = (Q_1, \Sigma, \delta_1, q_0^{(1)}, F_1)$ and $M_2 = (Q_2, \Sigma, \delta_2, q_0^{(2)}, F_2)$ be two DFAs. Describe DFAs M_\cup and M_\cap that accept, respectively, $L(M_1) \cup L(M_2)$ and $L(M_1) \cap L(M_2)$.

\begin{tabular}{lcc}
States & M_\cup & M_\cap
\hline
Alphabet & & \\
Transition & & \\
Initial state & & \\
Final states & & \\
\end{tabular}