Compiler Construction: Parsing

Mandar Mitra

Indian Statistical Institute
Context-free grammars

Formal way of specifying rules about the structure/syntax of a program
- terminals - tokens
- non-terminals - represent higher-level structures of a program
- start symbol, productions

Example:

$$E \rightarrow E \ op \ E \ | \ (E) \ | \ - \ E \ | \ id$$

$$op \rightarrow + \ | \ - \ | \ * \ | \ / \ | \ %$$

NOTE: recall token vs. lexeme difference

Derivation: starting from the start symbol, use productions to generate a string (sequence of tokens)

Parse tree: pictorial representation of a derivation
Ambiguity

Reference: Section 4.2, 4.3

Left-most derivation: at each step, replace left-most non-terminal

Ambiguous grammar: \(G \) is ambiguous if a string has \(> 1 \) left-most (or right-most) derivation

ALT: \(G \) is ambiguous if \(> 1 \) parse tree can be constructed for a string

Examples:

1. \(E \rightarrow E + E \quad E \rightarrow E \ast E \)

2. \(stmt \rightarrow \) if \(expr \) then \(stmt \) | if \(expr \) then \(stmt \) else \(stmt \)

[SOLUTION: \(stmt \rightarrow matched \mid unmatched \]

\(matched \rightarrow \) if \(E \) then \(matched \) else \(matched \]

\(unmatched \rightarrow \) if \(E \) then \(stmt \) | if \(E \) then \(matched \) else \(unmatched \)]
Recursive descent parsing:
- Corresponds to finding a leftmost derivation for an input string
- Equivalent to constructing parse tree in pre-order
- Example:
 Grammar: $S \rightarrow cAd \quad A \rightarrow ab \mid a$
 Input: cad

Problems:
1. backtracking involved (⇒ buffering of tokens required)
2. left recursion will lead to infinite looping
3. left factors may cause several backtracking steps
Top-down parsing - I

Reference: Section 4.3

Left recursion: G is left recursive if for some non-terminal A, $A \Rightarrow A\alpha$

Simple case I: $A \rightarrow A\alpha \mid \beta \quad \Rightarrow \quad A \rightarrow \beta A'$

$A' \rightarrow \alpha A' \mid \epsilon$

Simple case II:

$A \rightarrow A\alpha_1 \mid A\alpha_2 \mid \ldots \mid A\alpha_m \mid$

$\beta_1 \mid \ldots \mid \beta_n$

$A \rightarrow \beta_1 A' \mid \ldots \mid \beta_n A'$

$A' \rightarrow \alpha_1 A' \mid \alpha_2 A' \mid \ldots \mid \alpha_m A' \mid \epsilon$
Top-down parsing - I

General case:

Input: G without any cycles ($A \rightarrow^+ A$) or ε-productions
Output: equivalent non-recursive grammar

Algorithm:

Let the non-terminals be $A_1, \ldots A_n$.

for $i = 1$ to n do

 for $j = 1$ to $i - 1$ do

 replace $A_i \rightarrow A_j \gamma$ by $A_i \rightarrow \delta_1 \gamma | \delta_2 \gamma | \ldots | \delta_k \gamma$

 where $A_j \rightarrow \delta_1 | \delta_2 | \ldots | \delta_k$ are the current A_j productions

 end for

 Eliminate immediate left-recursion for A_i.

end for
Top-down parsing - I

Left factoring:

Example: \[stmt \rightarrow \text{if (expr) stmt} \mid \text{if (expr) stmt else stmt} \]

Algorithm:

\[
\text{while left factors exist do}
\]

\[
\text{for each non-terminal } A \text{ do}
\]

\[
\text{Find longest prefix } \alpha \text{ common to } \geq 2 \text{ rules}
\]

\[
\text{Replace } A \rightarrow \alpha \beta_1 \mid \ldots \mid \alpha \beta_n \mid \ldots
\]

\[
\text{by } A \rightarrow \alpha A' \mid \ldots
\]

\[
A' \rightarrow \beta_1 \mid \ldots \mid \beta_n
\]

\[
\text{end for}
\]

\[
\text{end while}
\]
Top-down parsing - II

Reference: Section 4.4

Predictive parsing: recursive descent parsing without backtracking

Principle: Given current input symbol and non-terminal, we should be able to determine which production is to be used

Example:
```latex
stmt \rightarrow \text{if ( expr ) \ldots |}
\text{while \ldots |}
\text{for \ldots}
```
Implementation: use transition diagrams (1 per non-terminal)

\[A \rightarrow X_1 X_2 \ldots X_n \]

1. If \(X_i \) is a terminal, match with next input token and advance to next state.

2. If \(X_i \) is a non-terminal, go to the transition diagram for \(X_i \), and continue. On reaching the final state of that transition diagram, advance to next state of current transition diagram.

Example:

\[
egin{align*}
E & \rightarrow E + T \mid T \\
T & \rightarrow T * F \mid F \\
F & \rightarrow (E) \mid \text{id}
\end{align*}
\]
Top-down parsing - II

Non-recursive implementation:

Table: 2-d array s.t. $M[A, a]$ specifies A-production to be used if input symbol is a

Algorithm:
0. Initially: stack contains $\langle EOF, S \rangle$, input pointer is at start of input
1. if $X = a = EOF$, done
2. if $X = a \neq EOF$, pop stack and advance input pointer
3. if X is non-terminal, lookup $M[X, a] \Rightarrow X \rightarrow UVW$
pop X, push W, V, U
FIRST(α): set of terminals that begin strings derived from α

- if $\alpha \Rightarrow^* \epsilon$, then $\epsilon \in FIRST(\alpha)$

FOLLOW (A): set of terminals that can appear immediately to the right of A in some sentential form

\[
FOLLOW(A) = \{ a \mid S \Rightarrow^* \alpha A \alpha \beta \}
\]

- if A is the rightmost symbol in any sentential form, then
- EOF $\in FOLLOW(A)$
FIRST:

1. If X is a terminal, then $\text{FIRST}(X) = \{X\}$
2. If $X \to \epsilon$ is a production, then add ϵ to $\text{FIRST}(X)$
3. If $X \to Y_1Y_2 \ldots Y_k$ is a production:
 - If $a \in \text{FIRST}(Y_i)$ and $\epsilon \in \text{FIRST}(Y_1), \ldots, \text{FIRST}(Y_{i-1})$, add a to $\text{FIRST}(X)$
 - If $\epsilon \in \text{FIRST}(Y_i) \ \forall i$, add ϵ to $\text{FIRST}(X)$

FOLLOW:

1. Add EOF to $\text{FOLLOW}(S)$
2. For each production of the form $A \to \alpha B \beta$
 - (a) add $\text{FIRST}(\beta) \setminus \{\epsilon\}$ to $\text{FOLLOW}(B)$
 - (b) if $\beta = \epsilon$ or $\epsilon \in \text{FIRST}(\beta)$, then add everything in $\text{FOLLOW}(A)$ to $\text{FOLLOW}(B)$
Table construction

Algorithm:

1. For each production $A \rightarrow \alpha$

 (a) for each terminal $a \in \text{FIRST}(\alpha)$, add $A \rightarrow \alpha$ to $M[A, a]$

 (b) if $\epsilon \in \text{FIRST}(\alpha)$, add $A \rightarrow \alpha$ to $M[A, b]$ for each terminal $b \in \text{FOLLOW}(A)$

2. Mark all other entries “error”

Example:

Grammar:

\[
E \rightarrow E + T \mid T \\
T \rightarrow T * F \mid F \\
F \rightarrow (E) \mid \text{id}
\]

Input: $\text{id} + \text{id} * \text{id}$
LL(1) grammars

- If the table has no multiply defined entries, grammar is a LL(1)
 \(L \) - left-to-right \(L \) - leftmost 1 - lookahead

- If \(G \) is \(LL(1) \), then \(G \) cannot be left-recursive or ambiguous

- Example:
 \[S \rightarrow i \ E \ t \ S \ S' \mid a \]
 \[S' \rightarrow e \ S \mid \epsilon \]
 \[E \rightarrow b \]
 \[M[S', e] = \{ S' \rightarrow \epsilon, S' \rightarrow e \ S \} \]

- Some non-\(LL(1) \) grammars may be transformed into equivalent \(LL(1) \) grammars
Error recovery:

1. if X is a terminal, but $X \neq a$, pop X
2. if $M[X, a]$ is blank, skip a
3. if $M[X, a] = synch$, pop X, but do not advance input pointer

Synch sets:

use $FOLLOW(A)$

add the $FIRST$ set of a higher-level non-terminal to the $synch$ set of a lower-level non-terminal
Bottom-up parsing

Example: Grammar: \[E \rightarrow E + T \mid T \]
\[T \rightarrow T \ast F \mid F \]
\[F \rightarrow (E) \mid id \]

Input: id + id * id

Sentential form: any string \(\alpha \) s.t. \(S \Rightarrow^* \alpha \)

Handle: for a sentential form \(\gamma \), handle is a production \(A \rightarrow \beta \) and a position of \(\beta \) in \(\gamma \), s.t. \(\beta \) may be replaced by \(A \) to produce the previous right-sentential form in a rightmost derivation of \(\gamma \)

Properties:
1. string to right of handle must consist of terminals only
2. if \(G \) is unambiguous, every right-sentential form has a unique handle

Advantages:
1. No backtracking
2. More powerful than \(LL(1) \) / predictive parsing
Implementation scheme:

0. Use input buffer, stack, and parsing table.
1. Shift ≥ 0 input symbols onto stack until a handle β is on top of stack.
2. Reduce β to A (i.e. pop symbols of β and push A).
3. Stop when stack = $\langle \text{EOF}, S \rangle$, and input pointer is at EOF.

Stack: $s_0 X_1 s_1 \ldots X_m s_m$, where each s_i represents a “state” (current situation in the parsing process)

Table:
- used to guide steps 2 and 3
- 2-d array indexed by $\langle \text{state}, \text{input symbol} \rangle$ pairs
- consists of two parts (action + goto)
Algorithm:

1. Initially, stack = $\langle s_0 \rangle$ (initial state)
2. Let s - state on top of stack
 a - current input symbol
 if $\text{action}[s, a] = \text{shift} \; s'$
 push a, s' on stack, advance input pointer
 if $\text{action}[s, a] = \text{reduce} \; A \rightarrow \beta$
 pop $2 \times |\beta|$ symbols
 let s' be the new top of stack
 push $A, \text{goto}[s', A]$ on stack
 if $\text{action}[s, a] = \text{accept}$, done
 else error
Grammar augmentation:

Create new start symbol S'; add $S' \rightarrow S$ to productions

Item ($LR(0)$ item): production of G with a dot at some position in the RHS, representing how much of the RHS has already been seen at a given point in the parse

Example: $A \rightarrow \epsilon \Rightarrow A \rightarrow \cdot$

Closure:

Let I be a set of items

$closure(I) \leftarrow I$

repeat until no more changes

for each $A \rightarrow \alpha \cdot B \beta$ in closure(I)

for each production $B \rightarrow \gamma$ s.t. $B \rightarrow \cdot \gamma \notin closure(I)$

add $B \rightarrow \cdot \gamma$ to closure(I)

Example: closure($E' \rightarrow \cdot E$)
Goto construction:
goto(I, X) = closure(\{ A \rightarrow \alpha X \cdot \beta \mid A \rightarrow \alpha \cdot X \beta \in I \})

Example: Let $I = \{ E' \rightarrow E \cdot, E \rightarrow E \cdot +T \}$

\[
goto(I, +) = \text{closure}(\{ E \rightarrow E + \cdot T \})
\]

Canonical collection construction:

1. $\mathcal{C} \leftarrow \{ \text{closure}(\{ S' \rightarrow \cdot S \}) \}$
2. repeat until no more changes:
 - for each $I \in \mathcal{C}$, for each grammar symbol X
 - if goto(I, X) is not empty and not in \mathcal{C}
 - add goto(I, X) to \mathcal{C}
Table construction:

1. Let \(C = \{I_0, \ldots, I_n\} \) be the canonical collection of \(LR(0) \) items for \(G \).
2. Create a state \(s_i \) corresponding to each \(I_i \). The set containing \(S' \rightarrow \cdot S \) corresponds to the initial state.
3. If \(A \rightarrow \alpha \cdot a\beta \in I_i \) and \(\text{goto}(I_i, a) = I_j \), then action\((s_i, a) = \text{shift} \ s_j \).
4. If \(A \rightarrow \alpha \cdot \in I_i \ (A \neq S') \), then action\((s_i, a) = \text{reduce} \ A \rightarrow \alpha \) for all \(a \in \text{FOLLOW}(A) \).
5. If \(S' \rightarrow S \cdot \in I_i \), then action\((s_i, \text{EOF}) = \text{accept} \).
6. If \(\text{goto}(I_i, a) = I_j \), then \(\text{goto}(s_i, a) = s_j \).
7. Mark all blank entries error.
Conflicts

1. Shift-reduce conflict: \(stmt \rightarrow \text{if (expr) stmt} | \text{if (expr) stmt else stmt} \)

2. Reduce-reduce conflict: \(stmt \rightarrow \text{id (param_list) ;} \)
 \(expr \rightarrow \text{id (expr_list)} \)

 Example:
 Grammar: \(S \rightarrow L = R \quad S \rightarrow R \quad L \rightarrow *R \quad L \rightarrow \text{id} \quad R \rightarrow L \)

 Canonical collection:
 \(I_0 = \{ S' \rightarrow \cdot S, \ldots \} \quad I_2 = \{ S \rightarrow L \cdot = R, R \rightarrow L \cdot \} \quad \ldots \)

 Table: \(\text{action(2, =) = shift} \ldots \quad \text{action(2, =) = reduce} \ldots \)

 NOTE: \(SLR(1) \) grammars are unambiguous, but not vice versa.
Motivation: Reduction by $A \rightarrow \alpha \cdot$ not necessarily proper even if $a \in FOLLOW(A)$

\Rightarrow explicitly indicate tokens for which reduction is acceptable

LR(1) item: pair of the form $\langle A \rightarrow \alpha \cdot \beta, a \rangle$, where $A \rightarrow \alpha \beta$ is a production, a is a terminal or EOF

Properties:

1. $\langle A \rightarrow \alpha \cdot \beta, a \rangle$ - lookahead has no effect
 $\langle A \rightarrow \alpha \cdot, a \rangle$ - reduce only if input symbol is a

2. $\{a \mid \langle A \rightarrow \alpha \cdot, a \rangle \in \text{canonical collection} \} \subseteq FOLLOW(A)$
Canonical LR parsers

Closure:

Let \(I \) be a set of items
\[
\text{closure}(I) \leftarrow I
\]
repeat until no more changes

for each item \(\langle A \rightarrow \alpha \cdot B \beta, \ a \rangle \) in closure(\(I \))

for each production \(B \rightarrow \gamma \) and each terminal \(b \in FIRST(\beta a) \)

if \(\langle B \rightarrow \cdot \gamma, \ b \rangle \notin \text{closure}(I) \)

add \(\langle B \rightarrow \cdot \gamma, \ b \rangle \) to closure(\(I \))

Goto:

\[
goto(I, X) = \text{closure}(\{\langle A \rightarrow \alpha X \cdot \beta, \ a \rangle \mid \langle A \rightarrow \alpha \cdot X \beta, \ a \rangle \in I\})
\]

Canonical collection construction:

1. \(C \leftarrow \{\text{closure}(\{\langle S' \rightarrow \cdot S, \ EOF\}\})\})\}
2. /* Similar to SLR algorithm */
Canonical LR parsers

Table construction:

1. If $\langle A \to \alpha \cdot a \beta, b \rangle \in I_i$ and $\text{goto}(I_i, a) = I_j$ then $\text{action}(i, a) = \text{shift } j$.

2. If $\langle A \to \alpha \cdot, b \rangle \in I_i$, then $\text{action}(i, b) = \text{reduce } A \to \alpha (A \neq S')$.
 If $\langle S' \to S \cdot, \text{EOF} \rangle \in I_i$, then $\text{action}(i, \text{EOF}) = \text{accept}$.
Motivation: try to combine efficiency of SLR parser with power of canonical method

Core: set of $LR(0)$ items corresponding to a set of $LR(1)$ items

Method:

1. Construct canonical collection of $LR(1)$ items, $C = \{I_0, \ldots, I_n\}$.
2. Merge all sets with the same core. Let the new collection be $C' = \{J_0, \ldots, J_m\}$.
3. Construct the action table as before.
4. If $J = I_1 \cup \ldots \cup I_k$, then $\text{goto}(J, X) =$ union of all sets with the same core as $\text{goto}(I_1, X)$.
No. of states: \(SLR = LALR \leq LR(1) \) (cf. Pascal)

Power: \(SLR < LALR < LR(1) \)

SLR vs. LALR: LALR items can be regarded as SLR items, with the core augmented by appropriate subsets of \(FOLLOW(A) \) explicitly specified.

LALR vs. LR(1):
1. If there were no shift-reduce conflicts in the \(LR(1) \) table, there will be no shift-reduce conflicts in the \(LALR \) table.
2. Step 2 may generate reduce-reduce conflicts.
 Example: \(I_1 = \{ \langle A \rightarrow \alpha \cdot, a \rangle, \langle B \rightarrow \beta \cdot, b \rangle \} \)
 \(I_2 = \{ \langle A \rightarrow \alpha \cdot, b \rangle, \langle B \rightarrow \beta \cdot, a \rangle \} \)
3. Correct inputs: LALR parser mimics \(LR(1) \) parser
 Incorrect inputs: incorrect reductions may occur on a lookahead \(a \) \(\Rightarrow \)
 parser goes back to a state \(I_i \) in which \(A \) has just been recognized.
 But \(a \) cannot follow \(A \) in this state \(\Rightarrow \) error
Error recovery

Reference: Section 4.8

Detection:
Canonical LR - errors are immediately detected (no unnecessary shift/reduce actions)
$SLR/LALR$ - no symbols are shifted onto stack, but reductions may occur before error is detected

Panic mode recovery:
1. Scan down the stack until a state s with a goto on a “significant” non-terminal A (e.g. $expr$, $stmt$, etc.) is found.
2. Discard input until a symbol a which can follow A is found.
3. Push A, goto(s, A) and resume parsing.

ExpIn: $s \equiv \alpha \cdot A a \beta \Rightarrow \alpha \gamma a \beta$

location of error
Phrase-level error recovery: recovery by local correction on remaining input e.g. insertion, deletion, substitution, etc.

Scheme:
1. Consider each blank entry, and decide what the error is likely to be.
2. Call appropriate recovery method
 - should consume input (to avoid infinite loop)
 - avoid popping a “significant” non-terminal from stack

Examples:
State: $E' \to E$
Input: + or *
Action: push id, goto appropriate state
Message: missing operand

State: $E \to E + T$
Input:)
Action: skip ‘)’ from input
Message: extra ‘)’
Usage: $ yacc myfile.y (generates y.tab.c)

File format:
 declarations
 %
 grammar rules (terminals, non-terminals, start symbol)
 %
 auxiliary procedures (C functions)

Semantic actions:
 — $$ - attribute value associated with LHS non-terminal
 $i - attribute value associated with i-th grammar symbol on RHS
 — specified action is executed on reduction by corresponding production
 — default action: $$ = $1
{%
#include <ctype.h>
#include <stdio.h>
#define YYSTYPE double /* double type for Yacc stack */
%
%token NUMBER
%left '+' '-'
%left '*' '/'
%right UMINUS
%
lines : lines expr \n { printf("%g\n", $2); }
 | lines \n { /* \n | */ $2 }
 | ;

expr : expr '+' expr { $$ = $1 + $3; }
 | expr '-' expr { $$ = $1 - $3; }
 | expr '*' expr { $$ = $1 * $3; }
 | expr '/' expr { $$ = $1 / $3; }
 | '(' expr ')' { $$ = $2; }
 | '-' expr %prec UMINUS { $$ = -$2; }
 | NUMBER
 ;
%

yylex() { int c;
 while ((c = getchar()) == '\n')
 if ((c == '\.') || (isdigit(c))) {
 ungetc(c, stdin);
 scanf("%lf", &yylval);
 return NUMBER;
 }
 return c;
}
}
Lexical analyzer: `yylex()` must be provided
- should return integer code for a token
- should set `yylval` to attribute value

Usage with `lex`:
```bash
% lex scanner.l
% yacc parser.y
% cc y.tab.c -ly -ll
```

Declared tokens can be used as return values in `scanner.l`
Implicit conflict resolution:
1. Shift-reduce: choose shift
2. Reduce-reduce: choose the production listed earlier

Explicit conflict resolution:
- **Precedence**: tokens are assigned precedence according to the order in which they are declared (lowest first)
- ** Associativity**: left, right, or nonassoc

- Precedence/assoc. of a production \equiv precedence/assoc. of rightmost terminal or explicitly specified using `%prec`

- Given $A \rightarrow \alpha \cdot, a$:
 - if precedence of production is higher, reduce
 - if precedence of production is same, and associativity of production is left, reduce
 - else shift