Multicollision Attacks on Some Generalized Sequential Hash Functions

M. Nandi
David R. Cheriton School of Computer Science
University of Waterloo
Waterloo, Ontario N2L 3G1, Canada
m2nandi@uwaterloo.ca

D. R. Stinson
David R. Cheriton School of Computer Science
University of Waterloo
Waterloo, Ontario N2L 3G1, Canada
dstinson@uwaterloo.ca

February 11, 2008

Abstract

A multicollision for a function is a set of inputs whose outputs are all identical. A. Joux showed multicollision attacks on the classical iterated hash function. He also showed how these multicollision attacks can be used to get a collision attack on a concatenated hash function. In this paper, we study multicollision attacks in a more general class of hash functions which we term “generalized sequential hash functions”. We show that multicollision attacks exist for this class of hash functions provided that every message block is used at most twice in the computation of the message digest.

1 Introduction

In this paper, we discuss multicollision attacks on generalized sequential hash functions (a precise definition of this class of hash functions will be given in Section 3). A multicollision is a generalized notion of collision on a function. A collision on a function \(g : X \rightarrow Y \) is an unordered pair \(\{x, y\} \subseteq X \) such that \(g(x) = g(y) \). For an integer \(r \geq 2 \), an \(r \)-way collision (or \(r \)-multicollision) on a function, \(g(\cdot) \), is an \(r \)-subset \(\{x_1, \ldots, x_r\} \subseteq X \) such that \(g(x_1) = g(x_2) = \ldots = g(x_r) = z \) (say). The common output value, \(z \), is known as the collision value for this \(r \)-way collision set. An \(r \)-way collision or \(r \)-multicollision attack is an algorithm which finds an \(r \)-multicollision set with some non-negligible probability.

The birthday attack for \(r \)-way collisions has time complexity \(\Theta(|Y|^{(r-1)/r}) \). When \(r = 2 \), the time complexity for finding a collision is \(\Theta(|Y|^{1/2}) \). The time complexity of an attack algorithm is usually proportional to the number of computations of the underlying function, \(g \), required to get a multicollision set. From now on, we will use the word “complexity” to mean time complexity, as measured by the number of computations of the underlying function.
A classical iterated hash function \[H : \{0,1\}^* \rightarrow \{0,1\}^n \], is based on a compression function, \(f : \{0,1\}^n \times \{0,1\}^{n'} \rightarrow \{0,1\}^n \). Here, we compute the value of \(H \) in the following way;

1. Given a message, we first apply some good padding rule, which includes some representation of the length of the message, so that the length of the padded input becomes a multiple of \(n' \) (see [3], [16] and [17] for more details). To analyze the hash function in a simpler way, we will usually ignore the padding rule. For example, a padding rule is irrelevant if we are concerned with messages of some fixed length.

2. Let \(M = m_1 \parallel \cdots \parallel m_\ell \) be a padded message\(^1\) with \(|m_i| = n' \) for \(1 \leq i \leq \ell \), and let \(h_0 \) be some fixed \(n \)-bit initial value. Then the classical iterated hash function, \(H \), based on the compression function \(f \) and the initial value \(h_0 \), is defined as follows: \(H(M) = h_\ell \), where \(h_i = f(h_{i-1},m_i) \), \(1 \leq i \leq \ell \). For each \(1 \leq i < \ell \), \(h_i \) is known as an intermediate hash value, and \(H(M) \) is the output hash value (also known as a message digest).

The above-described method is the most frequently used technique for the design of practical hash functions.

Recently, A. Joux [11] found an algorithm to construct a \(2^r \)-multicollision set on a classical iterated hash function, having time complexity \(O(r2^{n/2}) \), which is a considerable improvement over the birthday attack (see Theorem 2.2). This multicollision attack can be considered as a weakness of the iterated hash function design because of the following reasons:

1. Joux also showed how the multicollision attack can be used to construct a collision attack, which is better than the birthday attack, on the concatenated hash function \(H \parallel G \) where \(H \) is the classical hash function and \(G \) is any hash function.

2. There are some other practical applications where multicollision secure hash functions are required. These include the micropayment scheme Micromint [21], the identification scheme of Girault and Stern [7], the signature scheme of Brickell \(et \ al \) [1], etc.

3. (Multi)collision secure hash function design is an interesting fundamental question, because a function having an efficient (multi)collision attack gives evidence of the non-randomness of the function.

1.1 Our Contribution and Related Work

In light of the above discussion, it is an interesting question to find a good design technique for hash functions that are secure against multicollision attacks. In this paper, we provide some negative answers to this question. We study a certain generalization of the classical iterated hash function in which every message block is used up to two times in the computation of a message digest. This generalization is a natural way to attempt to prevent Joux’s attack from succeeding, and it is therefore worthwhile to study this approach in detail. Unfortunately, we show that these generalized sequential hash functions also have efficient multicollision attacks. We find \(2^r \)-multicollision attacks with expected complexity \(O(r^2 \ln r(n + \ln \ln r)2^{n/2}) \). Thus, we rule out a natural and large class of hash functions as candidates for multicollision secure hash functions.

\(^1\)Sometimes we may write \(M \) as an \(\ell \)-tuple, i.e., \(M = (m_1, \ldots, m_\ell) \).
The attacks presented in this paper were first described in a more informal way in the PhD thesis of the first author [18] and in the unpublished manuscript [19]. In the current paper, we are presenting complete descriptions of the attacks as well as precise complexity analyses.

In [18] and [19], similar attacks on so-called “tree-based hash functions” were also pointed out. The attacks assumed that every message block is used at most twice (similar to the assumption we make regarding generalized sequential hash functions). Recently, our attacks were extended and generalized by Hoch and Shamir [10]. Their paper considers generalized sequential or tree-based hash functions that have a fixed expansion rate, which indicates the maximum number of times a message block is processed in the evaluation of a message digest (our attacks concern hash functions with expansion rate 2).

1.2 Organization of Our Paper

In Section 2 we provide an introduction to birthday attacks, Joux’s attack and its applications. In Section 3, we provide a definition of a general class of iterated hash functions. The “generalized sequential hash functions” we study in this paper are a special case of this definition. Section 4 defines some useful terminology and results on sequences and partial orders. Then, in Section 5, we describe our attacks and provide a detailed complexity analysis. Finally, Section 6 is a brief conclusion.

2 Preliminaries

In this section, we give a brief introduction to the birthday attack, which is the basis for the attacks to be used throughout this paper. We also state some recent results on multicollision attacks which motivate the rest of the paper. Namely, we discuss Joux’s multicollision attack on classical iterated hash functions. Finally we give some simple but important applications of multicollision attacks.

2.1 The Birthday Attack

A hash function usually has two main components: a compression function, \(f : \{0,1\}^n \times \{0,1\}^{n'} \rightarrow \{0,1\}^n \), and a method to extend the domain of the compression function into \(\{0,1\}^* \). The second component is also known as the “design of iteration” as we generally iterate the compression function several times. Throughout this paper, we consider only attacks which treat the underlying compression function, \(f \), as a black-box. Thus, the attacker is not exploring any internal structure of \(f \). The attacker can only make some queries to the function \(f \), and, based on the responses of the queries, he finally outputs some value or values. Here a \textit{query} denotes an input to \(f \), say \(x \), and the \textit{response} denotes the output, \(y = f(x) \). This type of attack can be applied to any compression function, and hence it mainly points out the security of the design of iteration.

We recall that the complexity of an \(r \)-multicollision attack algorithm is the number of queries of \(f \) required to get an \(r \)-multicollision. A natural (and the most popular) attack is the \textit{birthday attack}. It is well-known that the standard birthday attack (which finds a 2-way collision) has complexity \(\Theta(2^{n/2}) \) when message digests are \(n \) bits in length. In a birthday attack on a function \(g : X \rightarrow Y \), we assume that the function \(g \) is a \textit{random oracle}; i.e., every output value \(g(x) \) is chosen uniformly at random from \(Y \). Random oracles are the usual model for hash functions which can be accessed in a black-box manner.
For the standard birthday attack, we will make use of the following bound (see [16, 24, 25] for a more detailed discussion).

Theorem 2.1. (Complexity of the Standard Birthday Attack) For a random oracle \(g : X \to \{0,1\}^n \), the birthday attack with complexity \(q \) finds a 2-way collision with probability roughly equal to \(1 - e^{-q^2/2^{2n+1}} \).

The following algorithm describes the generalized birthday attack of complexity \(q \) for (possibly) finding an \(r \)-multicollision of the function \(g \), based on making \(q \) queries to the function \(g \).

Generalized Birthday Attack

<table>
<thead>
<tr>
<th>Input:</th>
<th>A random oracle (g : X \to {0,1}^n); complexity (q); and desired multicollision size (r).</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Choose (x_1, \ldots, x_q) from the domain (X) and compute (y_i = g(x_i)) for (1 \leq i \leq q).</td>
</tr>
<tr>
<td>2.</td>
<td>If there is a subset (C \subseteq {x_1, \ldots, x_q}) of size (r) such that (C) is an (r)-way multicollision subset for the function (g), then return (C). Otherwise return the output “failure”.</td>
</tr>
</tbody>
</table>

We note that the standard birthday attack is just the special case \(r = 2 \) of the generalized birthday attack. The next theorem gives an estimate of the complexity of the generalized birthday attack in finding an \(r \)-multicollision with some specified probability \(p \).

Theorem 2.2. (Complexity of the Generalized Birthday Attack)

For a random oracle \(g : X \to \{0,1\}^n \), the birthday attack with complexity \(q \) finds an \(r \)-way collision with probability \(p \) provided that \(q \approx (r!)^{1/r} 2^{n(r-1)/r} (\ln(1/(1-p)))^{1/r} \). For fixed \(p \), the complexity is \(\Theta(2^{n(r-1)/r}) \). For fixed \(p \) and \(r \), the complexity is \(\Theta(2^{n(r-1)/r}) \).

Proof. We use an estimate given by Diaconis and Mosteller [5]. They state that the generalized birthday attack having complexity \(q \) finds an \(r \)-way collision with probability \(p \), where

\[
q e^{-q/(r2^n)} \left(1 - \frac{q}{(r+1)2^n} \right)^{-1/r} \approx \left(2^{n(r-1)/r!} \ln \left(\frac{1}{1-p} \right) \right)^{1/r}.
\]

For values of \(n \) and \(r \) of cryptographic interest, the left side of (1) is essentially equal to \(q \). Using the facts that \((r!)^{1/r} = \theta(r)\) and \(\lim_{r \to \infty} (\ln(1/(1-p)))^{1/r} = 1\), the stated results follow.

2.2 Joux’s Multicollision Attack

In a recent paper by Joux [11], it was shown that there is a \(2^r \)-way collision attack for the classical iterated hash function based on a compression function, \(f : \{0,1\}^{n+n'} \to \{0,1\}^n \), where the attack has complexity \(O(r 2^{n/2}) \). This complexity is much less than the complexity for the generalized birthday attack (see Theorem 2.2).

Here is the basic idea of Joux’s attack. Consider the set of \(n \)-tuples \(\{0,1\}^n \). We use the notation \(h \xrightarrow{m} h' \) (a labeled arc) to mean \(f(h, m) = h' \), where \(|h| = |h'| = n \) and \(|m| = n' \). The strategy of Joux’s attack is to first find \(r \) successive collisions by performing \(r \) successive birthday attacks (each having complexity \(2^{n/2} \)), as follows:
In other words, for 1 ≤ i ≤ r, we apply a birthday attack to find \(m_i^1 \neq m_i^2 \) such that

\[
f(h_{i-1}, m_i^1) = f(h_{i-1}, m_i^2) = h_i,
\]

for some \(h_i \). Then the set

\[
\{m_1^1, m_1^2\} \times \{m_2^1, m_2^2\} \times \cdots \times \{m_r^1, m_r^2\}
\]

is a 2^r-way collision set.

Of course, the birthday attack is itself a probabilistic attack. From Theorem 2.1, we see that a birthday attack with complexity \(2^{n/2} \) succeeds with probability approximately equal to 0.4, and therefore the expected number of applications of each birthday attack is about 2.5. We do not carry out the ith birthday attack until the \((i-1)\)st attack has succeeded. Therefore the total expected number of birthday attacks required in Joux’s attack is about 2.5r, which is just \(O(r) \). The complexity of each birthday attack is \(2^{n/2} \), so the overall expected complexity of Joux’s attack is \(2.5^r 2^{n/2} \), which is \(O(r 2^{n/2}) \).

Remark 2.1. The term “expected complexity” is used in its usual sense, i.e., to denote the average-case complexity of the attack. All the attacks in this paper will be analyzed in terms of average-case complexity.

Remark 2.2. Within each birthday attack in Joux’s attack, it would more efficient to keep increasing the sample size until a collision is found (provided that there is sufficient memory available). However, the analysis is simplified by using birthday attacks with a fixed sample size \(q = 2^{n/2} \). We note that the asymptotic complexity of the attack is not affected by this simplification. For simplicity of presentation and analysis, we will employ birthday attacks with fixed sample size in all our attacks.

2.3 Applications of Multicollision Attacks

The birthday attack is feasible for small sized output hash values. To make the birthday attack infeasible, one simply specifies a large output hash value. There are many approaches of designing hash functions having large output hash values based on secure block ciphers; see [8], [9], [14], [13], [20], [23]. However, most of these designs were proven to be insecure; see [8], [14], [13], [20], [23]. Recently, Hirose [9] designed secure double length hash functions based on secure block ciphers. But the efficiency of the design is fairly low.

A natural and efficient approach to produce large output hash values is the concatenation of several smaller output hash values. For example, given two classical iterated hash functions, \(H \) and \(G \), one can define a hash function \(H(M) \parallel G(M) \). This idea has been suggested because it is efficient, simple to implement, and it apparently improves security (see, for example, [16, p. 334]). However, due to the attacks of Joux [11], there exists a collision attack that is more efficient than
than the birthday attack. The complexity of the attack is roughly the maximum of the complexity of the multicollision birthday attack on H and the complexity of the standard birthday attack on G.

We briefly describe the attack (see [11] for more details). Let H and G have output hash values of n_H and n_G bits in length, respectively.

1. By using Joux’s multicollision attack, find $2^{n_G/2}$ messages which have common output hash value (say h^*) on H.

2. Find two messages, say M and N where $M \neq N$, which are members of the set of $2^{n_G/2}$ messages found in step 1, such that they have same output hash value (say g^*) on G. Note that we expect to be able to find a collision on an n_G-bit function from a set of $2^{n_G/2}$ messages using the standard birthday attack.

Thus, we have $H(M) \parallel G(M) = H(N) \parallel G(N) = h^* \parallel g^*$. The overall complexity of this attack is $O(n_H 2^{n_H/2} + 2^{n_G/2})$. Note that we only assume that H is a classical iterated hash function; G can be any hash function at all.

Remark 2.3. As mentioned previously, we ignore the padding that includes the binary representation of the length of the inputs. Note that, even if we included the padding, it does not affect the above attack, as the multicollision sets consist of messages of equal length.

3 A General Class of Hash Functions

We have seen in Section 2.2 that the classical iterated hash function is vulnerable to a multicollision attack. Thus one cannot use the classical iterated hash function if multicollision secure hash functions are needed. There are some other disadvantages of using classical iterated hash functions. For example, Kelsey and Schneier [12] have found a generic second preimage attack that is better than the birthday attack.

To fix all these problems, one can try to use some suitable variant of the classical iterated hash function. We note that, recently, Lucks [15] designed a hash function that is secure against multicollision attack. In his construction a “wide” compression function is used. The hash function is proven to be secure if the compression function and the output transformation are both random oracles.

Alternatively, one might consider a modification of the classical iterated hash function where message blocks are used more than once. Another approach is to use a parallel design, which is characterized by a directed tree; see [22]. One can also combine these two approaches.

These types of generalized hash functions could be considered as an alternative to the classical iterated hash function since Joux’s attack cannot be applied. For example, the hash function $H'(M) = H(H(IV, M), M)$ uses each message block twice. Here H denotes the classical iterated hash function. We call this hash function a *doubly iterated hash function* as it uses the classical iteration technique twice. Obviously, Joux’s attack can not be applied directly to this hash function. Thus it is worthwhile to study this class in more detail.

Remark 3.1. The idea of “cycling through the message blocks twice” is apparently due to Davies and Price [4]. Their construction uses an encryption function instead of a compression function, and it is susceptible to meet-in-the-middle attacks (see [2, 6]). The meet-in-the-middle attacks exploit the invertibility of an encryption function and cannot be applied in the context we are considering.
We define a very general class of hash functions. Let \(f: \{0,1\}^N \rightarrow \{0,1\}^n \) be a compression function. A hash function \(H \) from the class behaves in the following manner:

1. It invokes \(f \) a finite number of times.
2. The entire output of any intermediate invocation (not the final invocation) is fed into the input of other invocations of \(f \).
3. Each bit of the message, \(M \), is fed into at least one invocation of \(f \).
4. The output of the final invocation is the output of the hash function, \(H \).

We define a general class \(D \) of hash functions satisfying the above conditions. We will assume that our message has the form \(M = m_1 \| \cdots \| m_\ell \), where each \(m_i \) is a message block that is an \(n' \)-bit string. We also assume that we have a fixed set of initial values, denoted \(v_1, v_2, \ldots \), each of which is an \(n \)-bit string. Every input to \(f \) is of the form \(h \| x \). Each \(h \) is the concatenation of \(d' \) \(n' \)-bit strings, each of which is a previously computed output of \(f \) or an initial value; and each \(x \) is the concatenation of \(d \) message blocks. We will require that \(d' \geq 0, d \geq 0 \) and \(nd + n'd' = N \).

Then we can specify the computation of the hash function by a list of triples

\[
L = \{(h_i, x_i, y_i) : 1 \leq i \leq s\},
\]

where the following conditions hold for all \(i \):

1. \(f(h_i \| x_i) = y_i \),
2. \(h_i = h_i^1 \| \cdots \| h_i^{d'} \),
3. \(h_i^j \in \{v_1, v_2, \ldots \} \cup \{y_1, \ldots, y_{i-1}\} \),
4. \(x_i = x_i^1 \| \cdots \| x_i^d \), and
5. \(x_i^j \in \{m_1, \ldots, m_\ell\} \).

Each \(y_i \) is an \textit{intermediate hash value} and \(y_s \) is the \textit{output hash value}. Note that the values of \(d \) and \(d' \) do not have to be constant; they may depend on \(i \). However, \(nd + n'd' = N \) must always hold.

3.1 Generalized Sequential Hash Functions

In this paper, we consider a special (but still quite general) subclass of \(D \), which are termed \textit{generalized sequential hash functions} and denoted by \(S \). The class \(D \) will contain the classical iterated hash function as one of its members. In the class \(S \) of generalized sequential hash functions, we have \(d = d' = 1 \) for all \(i \) and \(N = n' + n \). Define a sequence \(\alpha = (\alpha_1, \ldots, \alpha_s) \) where \(\alpha_i \in \{1, 2, \ldots, \ell\} \). Let \(h_1 = v_1 \) (an initial value), \(h_i = y_{i-1} \) for all \(i \geq 2 \), and let \(x_i = m_{\alpha_i} \) for all \(i \geq 1 \). Hence, we can express the computation in the form

\[
h_i = f(h_{i-1}, m_{\alpha_{i-1}}), ~ 2 \leq i \leq s + 1,
\]
where \(h_1 \) is an initial value and \(h_{s+1} \) is the final hash value.

We can present this hash function diagrammatically, as follows:

\[
h_1 \xrightarrow{m_{\alpha_1}} h_2 \xrightarrow{m_{\alpha_2}} h_3 \xrightarrow{m_{\alpha_3}} \cdots \xrightarrow{m_{\alpha_{s-1}}} h_s \xrightarrow{m_{\alpha_s}} h_{s+1}.
\]

Note that each message block must be used at least once in the above computation. In the case of the classical iterated hash function, however, we have \(\alpha_i = i \) for all \(i \), and \(s = \ell \). Also, in the classical iterated hash function, each message block is used exactly once.

To define a hash function with arbitrary domain \(\{(0,1)^N\}^* \), say \(H : \{(0,1)^N\}^* \rightarrow \{0,1\}^n \), we have a sequence of sequences \(\langle \alpha^1, \alpha^2, \cdots \rangle \) such that \(H(M) \) is defined based on the sequence \(\alpha^\ell \), where \(\alpha^\ell \) contains elements from \(\{1, \ldots, \ell\} \), whenever \(M \) is an \(\ell \)-block message. Also, each sequence \(\alpha^\ell \) should use every element in \(\{1, \ldots, \ell\} \).

4 Some Terminologies on Sequences and Partial Orders

Consider a fixed, finite sequence \(\alpha = \langle \alpha_1, \alpha_2, \cdots, \alpha_s \rangle \) of symbols, where each symbol is an element of the symbol set \(S = \{1, \ldots, \ell\} \) and every symbol occurs at least once in the sequence. The length of the sequence \(\alpha \) is \(s \) and it is denoted by \(|\alpha| \). The index set of the sequence \(\alpha \) is \(\{1, \ldots, s\} \).

For a sequence of distinct indices, i.e., \(I = \langle i_1, \ldots, i_k \rangle \), \(\alpha(I) \) denotes the sequence \(\langle \alpha_{i_1}, \alpha_{i_2}, \ldots, \alpha_{i_k} \rangle \). We also write this sequence as \(\alpha(i_1, \ldots, i_k) \). The interval \([i, j] \) is defined to be the sequence \(\langle i, i+1, \ldots, j \rangle \). An initial interval is an interval of the form \([1, j] \). For \(1 \leq i < j \leq |\alpha| \), we define \(\alpha[i, j] = \langle \alpha_i, \alpha_{i+1}, \ldots, \alpha_j \rangle \).

We next define a relation on the symbol set \(S \). For \(x, y \in S \), \(x \neq y \), define \(x \prec y \) if every occurrence of \(x \) in \(\alpha \) precedes every occurrence of \(y \) in \(\alpha \). It is easy to see that the relation \(\prec \) is antisymmetric and transitive; hence \(\prec \) is a partial order.

Two symbols \(x \neq y \) are incomparable with respect to a partial order \(\prec \) on a finite set \(X \) if it is not the case that \(x \prec y \) or \(y \prec x \). A list of symbols \(x_1, \ldots, x_d \) is a chain if \(x_1 \prec x_2 \prec \cdots \prec x_d \). A set of chains is a chain decomposition if the chains are disjoint and their union is \(X \).

Later, we will use the classical result known as Dilworth’s Theorem, which applies to any partial order.

Theorem 4.1. (Dilworth’s Theorem) Suppose that \(\prec \) is a partial order on a finite set \(X \). Then the maximum number of mutually incomparable elements in \(X \) is equal to the minimum number of chains in any chain decomposition of \((X, \prec)\).

We denote the maximum number of elements in a chain by \(\text{maxchain}(X) \). For our partial order defined with respect to a sequence \(\alpha \), this quantity is denoted by \(\text{maxchain}(\alpha) \). Obviously, if there are \(k \) elements which appear exactly once in the sequence \(\alpha \), then \(\text{maxchain}(\alpha) \geq k \).

We now consider some examples illustrating the above definition and terminologies. Later, we also show multicollision attacks on the generalized sequential hash functions based on these sequences.

Example 4.1. Let \(\Psi^{(1, \ell)} = \langle 1, 2, \ldots, \ell \rangle \) (the sequence for the classical iterated hash function). It is easy to see that \(1 \prec 2 \prec \cdots \prec \ell \) and hence \(\text{maxchain}(\Psi^{(1, \ell)}) = \ell \).

Example 4.2. Let \(\Psi^{(2, \ell)} = \langle 1, 2, \ldots, \ell, 1, 2, \ldots, \ell \rangle \). The doubly iterated hash function is based on the sequence \(\Psi^{(2, \ell)} \). It is easy to observe that there is no chain of length two in the sequence \(\Psi^{(2, \ell)} \) and hence \(\text{maxchain}(\Psi^{(2, \ell)}) = 1 \).
Example 4.3. Let $\Phi^\ell = \langle 1, 2, 1, 3, 2, 4, 3, \ldots, \ell - 1, \ell - 2, \ell, \ell - 1, \ell \rangle$. Thus, for example, we have

- $\Phi^3 = \langle 1, 2, 1, 3, 2, 3 \rangle$,
- $\Phi^4 = \langle 1, 2, 1, 3, 2, 4, 3, 4 \rangle$, and
- $\Phi^5 = \langle 1, 2, 1, 3, 2, 4, 3, 5, 4, 5 \rangle$.

Observe also that Φ^ℓ can be constructed from $\Phi^{\ell-1}$ by deleting the last symbol in the sequence (namely, $\ell - 1$), and concatenating the sequence $\langle \ell, \ell - 1, \ell \rangle$.

Here, it is easy to see that $\maxchain(\Phi^\ell) \geq \left\lfloor \frac{\ell + 1}{2} \right\rfloor$, because

- if ℓ is odd

 $1 < 3 < \cdots < \ell$

- if ℓ is even

 $1 < 3 < \cdots < \ell - 1$

are chains. To prove that these are chains, consider the partition of the index set into intervals

$[1, 3], [4, 7], [8, 11], \ldots, [2\ell - 2, 2\ell]$.

Assume that ℓ is odd (the result for even ℓ can be proved similarly). Now one can see that $1 \in \Phi^\ell[1, 3], 3 \in \Phi^\ell[4, 7], \ldots, \ell \in \Phi^\ell[2\ell - 2, 2\ell]$. These elements do not appear in other intervals. Thus $1 < 3 < \cdots < \ell$ is a chain for the sequence Φ^ℓ.

In fact, we have $\maxchain(\Phi^\ell) = \left\lfloor \frac{\ell + 1}{2} \right\rfloor$. This can be proven as follows: For any $\left\lfloor \frac{\ell + 1}{2} \right\rfloor + 1$ elements from $\{1, \ldots, \ell\}$ there are two consecutive symbols (by applying the pigeonhole principle), say i and $i + 1$, and hence there is a (non-contiguous) subsequence $\langle i, i + 1, i \rangle$ of Φ^ℓ. Thus no $\left\lfloor \frac{\ell + 1}{2} \right\rfloor + 1$ elements can form a chain.

For a sequence α on symbols $\{1, \ldots, \ell\}$ and a symbol $x \in \{1, \ldots, \ell\}$ we define

$$\text{freq}(x, \alpha) = |\{i : \alpha(i) = x\}|.$$

Sometimes we write this as $\text{freq}(x)$ and we call it the frequency of x. This value denotes the number of times x appears in the sequence α. We also write $\text{freq}(\alpha)$ (frequency of the sequence) for the maximum frequency of any element from the sequence. More precisely,

$$\text{freq}(\alpha) = \max\{\text{freq}(x) : x \in \{1, \ldots, \ell\}\}.$$

Note that, for all $1 \leq i \leq \ell$, $\text{freq}(i, \Psi^{(2,\ell)}) = 2$ and $\text{freq}(i, \Phi^\ell) = 2$. Thus $\text{freq}(\Psi^{(2,\ell)}) = 2$ and $\text{freq}(\Phi^\ell) = 2$. We will show some multicollision attacks on sequential hash functions based on sequences whose frequencies are at most two.

5 Multicollision Attacks on Generalized Sequential Hash Functions

In this section, we describe our multicollision attacks. All our attacks will be 2^r-way multicollision attacks, where r is a positive integer. We will assume throughout this section that $r > 1$ (if $r = 1$,
then a 2^r-way multicollision attack is just a standard collision attack, and we do not need to use our new methods).

For the sake of convenience, we slightly modify the notation used in the definition of the generalized sequential hash functions. Given a compression function $f : \{0,1\}^{n+n'} \rightarrow \{0,1\}^n$, a fixed initial value h_0, and a sequence $\alpha = (\alpha_1,\ldots,\alpha_s)$ on symbols $\{1,\ldots,\ell\}$, the generalized sequential hash function based on α is defined to be $H(m_1 \parallel \cdots \parallel m_\ell) = h_s$, where $h_i = f(h_{i-1},m_{\alpha_i})$ for all $i \geq 1$.

We present a 2^r-way multicollision attack on the hash function based on a sequence α where $\text{maxchain}(\alpha) = r$. The complexity of the attack is $O(s 2^{n/2})$ where $s = |\alpha|$. In case of the classical iterated hash function, the corresponding sequence is $\Psi^{(1,\ell)}$ (see Example 4.1). Here we have $\text{maxchain}(\Psi^{(1,\ell)}) = \ell$ and thus we have a 2^ℓ-way multicollision attack with complexity $O(\ell 2^{n/2})$. This is the same as the complexity of Joux’s attack. In fact, we will see that our attack is same as Joux’s attack in the case of the classical iterated hash function.

The idea of the attack is to first identify message blocks that comprise a chain, and then to find a sequence of intermediate collisions by varying only those message blocks.

Example 5.1. We present an attack on the hash function based on the sequence

$$\Phi^5 = (1, 2, 1, 3, 2, 4, 3, 5, 4, 5)$$

(see Example 4.3). Here $1 \prec 3 \prec 5$ is a chain in Φ^5. The attack proceeds as follows:

step 1 We first fix the message blocks m_2 and m_4 by defining their values to be equal to some arbitrary string IV.

step 2 We use a birthday attack to find $m_1^1 \neq m_1^2$ such that

$$f(f(f(h_0, m_1^1), IV), m_1^1) = f(f(h_0, m_1^2), IV), m_1^2) = h_3$$

for some h_3.

step 3 We use a second birthday attack to find $m_3^1 \neq m_3^2$ such that

$$f(f(f(h_3, m_3^1), IV), IV, m_3^1) = f(f(f(h_3, m_3^2), IV), IV, m_3^2) = h_7$$

for some h_7.

step 4 Finally, we use a third birthday attack to find $m_5^1 \neq m_5^2$ such that

$$f(f(f(h_7, m_5^1), IV), m_5^1) = f(f(f(h_7, m_5^2), IV), m_5^2) = h_{10}$$

for some h_{10}.

step 5 Define

$$\mathcal{M}_i = \begin{cases} \{m_1^i, m_2^i\} & \text{if } i \in \{1, 3, 5\} \\ \{IV\} & \text{if } i \in \{2, 4\} \end{cases}$$

Then it is easy to see that

$$\mathcal{C} = \mathcal{M}_1 \times \mathcal{M}_2 \times \mathcal{M}_3 \times \mathcal{M}_4 \times \mathcal{M}_5$$

is a 2^3-way multicollision set with collision value h_{10}. The complexity of the attack is $10 \times 2^{n/2}$, because $|\Phi^5| = 10$.
Recall that the notation $h \xrightarrow{m} h'$ means $f(h, m) = h'$. More generally, given a sequence m_1, m_2, \ldots, m_j we use the notation

$$h \xrightarrow{m_1, m_2, \ldots, m_j} h'$$

to mean

$$f \cdots (f(h, m_1), m_2), \ldots, m_j) = h'.$$

Then steps 2–4 of the attack can be rewritten using this notation, as follows:

- $h_0 \xrightarrow{m_1, IV, m_1} h_3$ and $h_0 \xrightarrow{m_2, IV, m_2} h_3$ for some h_3, where $m_1 \neq m_2$
- $h_3 \xrightarrow{m_3, IV, IV, m_1} h_7$ and $h_3 \xrightarrow{m_5, IV, IV, m_2} h_7$ for some h_7, where $m_3 \neq m_5$
- $h_7 \xrightarrow{m_6, IV, m_3} h_{10}$ and $h_7 \xrightarrow{m_5, IV, m_2} h_{10}$ for some h_{10}, where $m_6 \neq m_5$.

In general, we have the following multicollision attack on a generalized sequential hash function.

Theorem 5.1. Let H be a hash function based on a sequence α, where $\text{maxchain}(\alpha) = r$. Then there exists a 2^r-way multicollision attack on H with complexity $O(s2^{n/2})$, where $s = |\alpha|$.

Proof. As $\text{maxchain}(\alpha) = r$, we have r elements in α, say $x_1 < \cdots < x_r$, which form a chain. For $1 \leq i \leq r - 1$, let b_i be the index of the last occurrence of x_i in α, and let $b_r = s$. For $2 \leq i \leq r$, let $a_i = b_{i-1} + 1$, and let $a_1 = 1$. Then the intervals $[a_1, b_1], \ldots, [a_r, b_r]$ form a partition of the interval $[1, s]$.

Now fix the message blocks m_i to be equal to an arbitrary string IV, for all $i \notin \{x_1, \ldots, x_r\}$. We will use r successive birthday attacks to find colliding values for m_{x_1}, \ldots, m_{x_r}.

Within any interval $[a_i, b_i]$, the values of all the message blocks $m_{\alpha_{a_i}}, m_{\alpha_{a_i+1}}, \ldots, m_{\alpha_{b_i}}$ are fixed except for m_{x_i}. Given a value for h_{a_i-1}, we can use a standard birthday attack to find two values (say $m_{x_i}^1$ and $m_{x_i}^2$) for m_{x_i} which yield the same value for h_{b_i}. After these r successive birthday attacks, we can construct a multicollision set of size 2^r as follows. Define

$$\mathcal{M}_i = \begin{cases} \{m_{x_i}^1, m_{x_i}^2\} & \text{if } i \in \{x_1, \ldots, x_r\} \\ \{IV\} & \text{if } i \notin \{x_1, \ldots, x_r\}. \end{cases}$$

Then it is easy to see that

$$\mathcal{C} = \mathcal{M}_1 \times \mathcal{M}_2 \times \cdots \times \mathcal{M}_\ell$$

is a 2^r-way multicollision set.

To perform the ith birthday attack, we make at most $(b_i - a_i + 1)2^{n/2}$ queries to f. For the complete attack we need at most

$$\sum_{i=1}^{r} (b_i - a_i + 1)2^{n/2} = s2^{n/2}$$

queries to f. The expected complexity of the attack is at most $2.5s2^{n/2}$, which is $O(s2^{n/2})$.

Remark 5.1. Note that the above attack reduces to Joux’s attack in the case of the classical iterated hash function. In this case, $1 \prec 2 \prec \cdots \prec \ell$ is a chain and thus we find a collision for each intermediate hash value by varying each message block. This is what Joux’s attack does.
Remark 5.2. The attack illustrated in Example 5.1 is an application of Theorem 5.1. In this attack, we have $r = 3$ and the index set $\{1, \ldots, 10\}$ is partitioned into the three intervals $[1, 3]$, $[4, 7]$, and $[8, 10]$.

To get a 2^r-way collision on the hash function based on the sequence Φ^ℓ (see Example 4.3), we can take $\ell = 2^r - 1$; then $\max\text{chain}(\Phi^\ell) = r$. By Theorem 5.1, we have a 2^r-way collision attack with complexity $O(r 2^{n/2})$. However, we cannot apply the same idea to the hash function based on the sequence $\Psi^{(2, \ell)}$ because $\max\text{chain}(\Psi^{(2, \ell)}) = 1$ (see Example 4.2). Here, we have to use a different multicollision attack. Our attack uses a strategy that is similar to the preimage attack on cascaded (i.e., concatenated) hash functions that is described in [11, Appendix A].

Example 5.2. Suppose $r > 1$. We present an attack on the hash function based on the sequence $\Psi^{(2, \ell)}$. Here are the steps in the attack:

step 1 Define

$$t = \frac{n + 1}{2} + \frac{\ln \ln 2}{2 \ln 2},$$

and let $\ell = tr$. We use Joux’s multicollision attack on the hash function based on the sequence $\Psi^{(1, \ell)}$ to find ℓ pairs,

$$(m_1^1, m_2^1), (m_1^2, m_2^2), \ldots, (m_\ell^1, m_\ell^2),$$

such that

$$f(h_{i-1}, m_1^1) = f(h_{i-1}, m_\ell^2) = h_i,$$

$1 \leq i \leq \ell$. Thus we have a 2^ℓ-way collision set

$$C = \{m_1^1, m_2^1\} \times \{m_1^2, m_2^2\} \times \cdots \times \{m_\ell^1, m_\ell^2\}$$

for the hash function based on the sequence $\Psi^{(1, \ell)}$.

step 2 Next, to get a 2^r-way multicollision for the hash function based on the sequence $\Psi^{(2, \ell)}$, we search for “intermediate” collisions within the set C using a standard birthday attack.

Divide the index interval $[\ell + 1, 2\ell]$ into r consecutive intervals, each consisting of t elements, i.e.,

$$I_1 = [\ell + 1, \ell + t],$$
$$I_2 = [\ell + 1 + t, \ell + 2t],$$
$$\vdots$$
$$I_r = [\ell + 1 + (r - 1)t, \ell + rt].$$

Write $h'_0 = h_\ell$. Then, for each $1 \leq i \leq r$, try to find two t-tuples, say $M_i^1 \neq M_i^2$, from the set

$$C_i = \{m_1^{(i-1)t+1}, m_2^{(i-1)t+1}\} \times \{m_1^{(i-1)t+2}, m_2^{(i-1)t+2}\} \times \cdots \times \{m_{it}, m_{it}\}$$

such that

$$h'_{i-1} \xrightarrow{M_i^1} h'_i \text{ and } h'_{i-1} \xrightarrow{M_i^2} h'_i \text{ for some } h'_i.$$
say. If this step fails for any \(i \), we have to return to step 1 and find a new \(2^\ell \)-way collision set \(C \).

step 3 Provided that the \(r \) birthday attacks in step 2 all succeed, it is easy to observe that

\[
C^* = \{M_1^1, M_2^1\} \times \{M_1^2, M_2^2\} \times \cdots \times \{M_1^r, M_2^r\}
\]

is a multicollision set (of size \(2^r \)) for our hash function\(^2\).

We need to compute the success probability of this attack. Applying Theorem 2.1, each birthday attack in step 2 succeeds with probability

\[
1 - e^{-\frac{(2t)^2}{2^{n+1}}} = 1 - e^{-2^{2t-(n+1)}} = 1 - e^{-2^{\frac{\ln \ln 2r}{n}}} = 1 - \frac{1}{2^r}.
\]

The probability that all \(r \) birthday attacks in step 2 succeed is

\[
\left(1 - \frac{1}{2^r}\right)^r > \frac{1}{2}.
\]

Now we can estimate the complexity of the entire attack. The expected complexity of step 1 is \(2.5tr 2^n/2 \). The complexity of any given birthday attack in step 2 is analyzed as follows: We need two queries to \(f \) for the two values of the first message block in an interval. Then we need four queries for the two values of the next message block, eight queries for the next message block, etc. In the worst case, where a collision is found in the last message block in the given interval, the complexity is

\[
2 + 4 + 8 + \cdots + 2^t = 2(2^t - 1).
\]

Overall, the complexity of the \(r \) birthday attacks in step 2 (assuming they all succeed) is at most \(2r(2^t - 1) \). Since step 2 succeeds with probability \(1/2 \), the overall expected complexity is upper-bounded by

\[
2 \times (2.5tr 2^n/2 + 2r(2^t - 1)).
\]

Using the fact that \(t \) is \(\Theta(n + \ln \ln r) \) and \(2^t \) is \(\Theta(2^{n/2} \ln r) \), the overall expected complexity is \(O(r(n + \ln \ln r)2^n/2 + r \ln r 2^n/2) \), which is \(O(r(n + \ln r)2^n/2) \).

Remark 5.3. In order carry out the above-described attack, we need messages with a sufficient number of message blocks. This is because the value of \(\ell, \) as defined in step 1, depends on both \(n \) and \(r \). We can see from the formulas in step 1 that \(\ell \) is slightly bigger than \(n \). If \(n = 160 \), (e.g., as in SHA-1) then we construct a multicollision set consisting of messages having at least 160 512-bit message blocks. Similar comments apply to the general attack described in Theorem 5.4, which we present a bit later.

Now, we prove a theorem which is a generalization of the attack given in Example 5.2.

Theorem 5.2. Suppose \(r > 1 \) and suppose that \(\alpha \) is a sequence of length \(s \) on symbols \(\{1, \ldots, \ell\} \) such that

1. \(\text{freq}(\alpha) \leq 2 \), and

\(^2\)This is a slight abuse of notation. Each element in this cartesian product is an \(r \)-tuple of \(t \)-tuples, whereas what we really want is the corresponding \(rt \)-tuple.
2. there exists an initial interval \([1, w]\) of the index set for which \(\alpha[1, w]\) contains \(tr\) symbols having frequency 1, where \(t = (n + 1)/2 + (\ln \ln 2r)/(2 \ln 2)\).

Then there is a \(2^r\)-way collision attack on the hash function based on the sequence \(\alpha\) having complexity \(O(s \ln r \cdot 2^{n/2})\).

Proof. Let \(x_1, \ldots, x_tr\) be symbols having frequency 1 in \(\alpha[1, w]\). Let \(\{y_1, \ldots, y_{r}\} \subseteq \{x_1, \ldots, x_tr\}\) comprise all the symbols in \(\{x_1, \ldots, x_tr\}\) that occur in \(\alpha[w + 1, s]\). Of course we have that \(\sigma \leq rt\).

The proof will use the same ideas as Example 5.2. However, there are two additional factors we now need to address:

1. Some symbols in \(\{x_1, \ldots, x_tr\}\) may have frequency 1 in \(\alpha\) (i.e., it might be the case that \(\sigma < tr\)), and

2. the symbols in \(\{y_1, \ldots, y_{r}\}\) may occur in a different order in \(\alpha[w + 1, s]\) than they did in \(\alpha[1, w]\).

Here are the main steps in the attack.

step 1 If \(i \notin \{x_1, \ldots, x_tr\}\), then we will define \(m_i = IV\), as we did in other attacks. Then we use Theorem 5.1 to construct a \(2^{tr}\)-multicollision set \(C\) for the hash function based on the sequence \(\alpha[1, w]\). The set \(C\) has the following form:

\[
C = M_1 \times \cdots \times M_\ell,
\]

where \(M_i = \{m_{i1}, m_{i2}\}\) if \(i \in \{x_1, \ldots, x_tr\}\) and \(M_i = \{IV\}\) if \(i \notin \{x_1, \ldots, x_tr\}\) (note that we define \(M_i = \{IV\}\) even if the symbol \(i\) does not occur in \(\alpha[1, w]\)). The output of this hash function is the value \(h_w\).

step 2 For \(1 \leq i \leq \sigma\), suppose that \(y_i\) occurs in position \(b_i\) in \(\alpha\), where

\[
w + 1 \leq b_1 < b_2 < \cdots < b_\sigma \leq s.
\]

Write \(\sigma = Qt + R\), where \(0 \leq R \leq t - 1\). We will partition the interval \([w + 1, s]\) into \(Q + 1\) intervals. The first \(Q\) intervals each contain \(t\) of the \(y_i\)'s and the last interval contains the remaining \(R\) of the \(y_i\)'s. more precisely, we define

\[
I_1 = [w + 1, b_1] = [c_1, d_1], \text{say}
\]
\[
I_2 = [b_1 + 1, b_2] = [c_2, d_2], \text{say}
\]
\[
\vdots \quad \vdots
\]
\[
I_Q = [b_{(Q-1)t+1}, b_{Qt}] = [c_Q, d_Q], \text{say}
\]
\[
I_{Q+1} = [b_{Qt+1}, s] = [c_{Q+1}, d_{Q+1}], \text{say}.
\]

Now we perform a series of \(Q\) additional birthday attacks within the intervals \([c_1, d_1]\), \ldots, \([c_Q, d_Q]\). Suppose \(1 \leq j \leq Q\). Within any interval \([c_j, d_j]\), the values of all the message blocks \(m_{\alpha_{c_j}}, m_{\alpha_{c_j+1}}, \ldots, m_{\alpha_{d_j}}\) are fixed except for \(m_{y_{(j-1)t+1}}, \ldots, m_{y_{jt}}\). Given a value for \(h_{c_{j-1}}\), we can use a standard birthday attack to find two \(t\)-tuples

\[
M_j^1, M_j^2 \in M_{y_{(j-1)t+1}} \times \cdots \times M_{y_{jt}}
\]

which yield the same value for \(h_{d_j}\). Finally, let \(M_{Q+1}\) be any \(R\)-tuple in \(M_{y_{Qt+1}} \times \cdots \times M_{ys}\).
step 3 Now construct a collision set C^*, consisting of all messages $M^* \in M_1 \times \cdots \times M_\ell$ such that the following conditions are satisfied:

1. $M^* \langle y_{(j-1)t+1}, \ldots, y_{jt} \rangle \in \{M_j^1, M_j^2\}$, for $j = 1, \ldots, Q$,
2. $M^* \langle y_{Qt+1}, \ldots, y_{\sigma} \rangle = M_{Q+1}$,
3. $m_i \in M_i$ for all $i \notin \{y_1, \ldots, y_{\sigma}\}$, where $M^* = \langle m_1, \ldots, m_\ell \rangle$.

It is clear that C^* is a collision set. We determine the cardinality of C^* as follows. From item 1, we see that there are 2^Q ways to choose tuples from $\{M_j^1, M_j^2\}$, $j = 1, \ldots, Q$. As well, in item 3, there are $2^{rt-\sigma}$ ways to choose the $rt-\sigma$ values m_i when $i \in \{x_1, \ldots, x_{rt}\}\{y_1, \ldots, y_{\sigma}\}$. Therefore $|C^*| = 2^{Q+rt-\sigma}$.

Now, C^* is a 2^r-multicollision set provided that $Q + rt - \sigma \geq r$. We show that this holds by considering two cases. If $\sigma = rt$, then $Q = r$ and

$$Q + rt - \sigma = r.$$

On the other hand, if $\sigma < rt$, then we use the fact that $R \leq t - 1$, and we have

$$Q + rt - \sigma = \frac{\sigma - R}{t} + rt - \sigma = rt - \frac{\sigma(t-1)}{t} - \frac{R}{t} > rt - \frac{rt(t-1)}{t} - 1 = rt - \sigma(t-1) - 1 = r - 1.$$

Since $Q + rt - \sigma > r - 1$ is an integer, we have $Q + rt - \sigma \geq r$, as desired.

Finally, we need to determine the complexity of this attack. The analysis is similar to Example 5, so we omit several details. First, step 1 can be done in time $O(w 2^{n/2})$. Step 2 takes time $O((s - w)2^t)$, which is $O((s - w)ln r 2^{n/2})$ (we note that a more precise estimate is possible, but it does not lead to improved asymptotic complexity). The total expected complexity is therefore $O(s ln r 2^{n/2})$.

So far, we have provided a multicollision attack if the underlying sequence α satisfies certain conditions. Now we show that appropriate conditions hold for any sequence α (having a sufficient number of elements) provided that $\text{freq}(\alpha) \leq 2$.

Theorem 5.3. Let α be a sequence of elements from symbol set $S = \{1, \ldots, \ell\}$ such that $1 \leq \text{freq}(x, \alpha) \leq 2$ for all $x \in S$. Suppose that $\ell \geq uv$. Then one of the following holds:

1. $\text{maxchain}(\alpha) \geq u$, or
2. there exists an initial interval $[1, w]$ of the index set such that $\alpha[1, w]$ contains at least v symbols each having frequency 1.

Proof. Let $\text{maxchain}(\alpha) = u_0$. If $u_0 \geq u$, then we’re done, so suppose that $u_0 < u$. Let v_0 denote the maximum number of mutually incomparable symbols in S. By Dilworth’s theorem, there exists a decomposition of S into v_0 chains. Every chain contains at most u_0 symbols, so $|S| = \ell \leq u_0v_0 < uv_0$. Hence, $v_0 > \ell/u \geq v$.

15
Now, let x_{i_1}, \ldots, x_{i_v} be v mutually incomparable elements. Let the first occurrence of x_{i_j} be at position a_j of α, for $j = 1, \ldots, v$, where $a_1 < \cdots < a_v$. Recall that every symbol occurs at most twice in α. It then follows that the second occurrence (if any) of any x_{i_j} must be after position a_v of α (if not, then $x_{i_j} \prec x_{i_v}$, a contradiction). Therefore x_{i_1}, \ldots, x_{i_v} all occur exactly once in the subsequence $\alpha[1, a_v]$. □

Now we state and prove our main theorem, which demonstrates a multicollision attack for any generalized sequential hash function with frequency at most two.

Theorem 5.4. Let H be a generalized sequential hash function based on the sequences $(\alpha^1, \alpha^2, \cdots)$, where $\text{freq}(\alpha^\ell) \leq 2$ for every $\ell \geq 1$. Then, for any $r > 1$, we have a 2^r-way collision attack on H having complexity $O(r^2 \ln r (n + \ln \ln r)^2n/2)$.

Proof. Let $t = (n + 1)/2 + (\ln \ln 2r)/(2 \ln 2)$ and define $\ell = r^2 t$. Applying Theorem 5.3, we have that one of the following holds:

1. $\maxchain(\alpha^\ell) \geq r$, or
2. there exists an initial interval $[1, w]$ of the index set such that $\alpha[1, w]$ contains at least rt symbols each having frequency 1.

In the first case, Theorem 5.1 provides a 2^r-way collision attack having complexity $O(s 2^n/2)$, where $s = |\alpha^\ell|$. But $s \leq 2\ell$, so s is $O(r^2(n + \ln \ln r))$ and the attack has complexity $O(r^2 (n + \ln \ln r)2^n/2)$.

In the second case, we apply Theorem 5.2. Here, the attack has complexity $O(s \ln r 2^n/2)$, which is $O(r^2 \ln r (n + \ln \ln r)2^n/2)$. This complexity exceeds the complexity of case 1, and the result follows. □

6 Conclusion

In this paper, we have defined a natural class of hash functions and we studied their security with respect to multicollision attacks. We have found efficient multicollision attacks on the generalized sequential hash functions when the message blocks are processed at most twice. Hoch and Shamir [10] recently have found attacks even if the message blocks are used more than twice. It is an interesting open question to search for hash functions, within the general class we defined in Section 3, which are secure against multicollision attacks.

Acknowledgements

Research of the second author is supported by NSERC grant RGPIN 203114-06.

References

16

[6] M. Girault, R. Cohen and M. Ca

