
Forthcoming Seminars
 20.02.2019,
at 3.30 pm
Seminar room, PAMU (Kolmogorov Bhavan)

 Lognormal Simulations in Redshift Space
Speaker:
Aniket Agrawal, Institute of Astronomy and Astrophysics, Academia Sinica, Taiwan
Abstract:
Galaxies in the universe are observed to follow a lognormal distribution. Motivated by this, in this talk I will present a code to generate lognormal galaxy distributions in the universe quickly. The clustering properties of these mocks can be fully predicted analytically in real space. Using linear velocities we are also able to reproduce the large scale redshift space distribution of galaxies. These catalogs are useful for performing end to end tests of analysis pipelines and for Fisher matrix forecasts for future surveys. I will discuss these results and the short comings of this approach.

Past Seminar List
 14.01.2019,
at 2.30 pm
Seminar room, PAMU (Kolmogorov Bhavan)

 The operator theoretic approach to dynamical systems
Speaker:
Suddhasattwa Das, New York University
Abstract:
The operator theoretic framework for dynamical systems studies the dynamics induced on some functional space like $C^0(M)$ or $L^2(\mu)$, instead of the trajectories on the underlying phase space $M$. It transforms the dynamics under any nonlinear flow $\Phi^t$ into a linear map on some Banach / Hilbert space. The dynamics is induced by the Koopman operator $U^t$, which acts on functions by time shifts, namely, $(U^t f)(x) = f (\Phi^t x)$. The operator theoretic framework offers an alternative way of restating several questions in dynamics, and the spectral properties of $U^t$ have important implications on the actual dynamics. I will discuss the connections of $U^t$ with the statistical / ergodic properties of the underlying dynamics. I will also discuss how these operators can be well approximated by matrices, and discuss various convergence results.

 24.12.2018,
at 2.00 pm
Seminar room, PAMU (Kolmogorov Bhavan)

 Computational Methods to Identify Driver and Druggable Mutations in Cancer
Speaker:
Sohini Sengupta, Washington University School of Medicine
Abstract:
Recently, there has been an enormous corpus of cancer sequencing data through largescale projects such as The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC). TCGA provides whole genome and exome sequencing data of tumor and matched normal samples for various cancer types. ICGC also studies genomic alterations in tumors across 50 cancer types. These projects provide an unprecedented opportunity for comprehensive discovery of cancer mutations genomewide. There is an urgent need to systematically reveal the functional implications and oncogenic potentials of genetic mutations recently identified in these largescale studies. The majority of mutations in cancer samples are incidental passengers; distinguishing between driver and passenger somatic mutations to pinpoint the exact genetic alterations leading to tumor initiation and/or progression still present significant challenges.
To meet these challenges, various computational approaches have been developed as effective filters, pruning most of the somatic mutations to a shortlist of highpriority, functional candidates for experimental validation. However, these approaches rely heavily on primary protein sequence context and frequency/mutation rate. Rare driver mutations not found in many cancer patients may be missed with these traditional approaches. Additionally, the structural context of mutations on 3D protein structures is not taken into account and may play a more prominent role in determining phenotype and function. We have created a suite of computational methods to address this gap in knowledge and explore mutations in the context of protein structure and their potential implications in oncogenesis.
The oncogenic potentials of the predicted driver mutations can then be confirmed experimentally if the mutation leads either to DNA repair deficiency, cell proliferation, or immune evasion. Discerning drivers from passengers will result in a greater understanding of the mechanisms governing cancer biology and will also have therapeutic implications.

 17.12.2018,
at 3.00 pm
Seminar room, PAMU (Kolmogorov Bhavan)

 Non Gaussian yet Brownian diffusion in Soft Matter
Speaker:
Suman Dutta,
Institute of Mathematical Sciences,
Chennai
Abstract:
Much celebrated Einstein's theory of diffusion considers extreme
separation of timescales between solute and solvent particle in a
chemical dispersion. Thus, the Fickian diffusion is widely successful in
explaining most of the molecular transport which is realized in terms of
Gaussian probability distributions of particle displacements. But the
local environmental fluctuation in many complex systems dominates the
microscopic motion, leading to an intermittence in dynamics, resulting
in nonGaussian displacement distribution where microscopic motion could
be explained in terms of a diffusion spectrum, instead of a single
diffusion coefficient as in normal Brownian motion. Our investigation in
a generic driven system show notions of 'NonGaussian yet Brownian'
motion which I shall motivate further.

 22.11.2018,
at 3.30 pm
Seminar room, PAMU (Kolmogorov Bhavan)

 Dynamical synchronization transition in interacting electron
systems
Speaker:
Tanay Nag, MPIPKS, Dresden Germany
Abstract:
Using graphene irradiated by an intense bicircular pulse
laser as a prototypical example, we theoretically investigate how to
selectively generate coherent oscillation of electronic orders such as
charge density waves (CDW), where the key is to use tailored fields
that match the crystalline symmetry broken by the target order. After
the pump, a macroscopic number of electrons start oscillating and
coherence is built up through a dynamical synchronization transition
described by an effective Kuramoto model. The oscillation is detectable
as a coherent light emission at the synchronized frequency and may be
used as a purely electronic way of realizing a Floquet state respecting
space time crystalline symmetries. In the process, we explore possible
flipping of existing static CDW order and generation of higher
harmonics. The analysis is done within the time dependent mean field
treatment of the extended Hubbard model on the honeycomb lattice.

 23.10.2018,
at 3.00 pm
Seminar room, PAMU (Kolmogorov Bhavan)

 Magntotransport properties of 2D material with tilted Dirac cones
Speaker:
Firoz Islam, Institute of Physics, Bhubaneswar
Abstract:
Polymorph of 8Pmmn borophene exhibits anisotropic tilted
Dirac cones. In this talk, I will discuss the consequences of the tilted
Dirac cones in magnetotransport properties of 2D sheet of borophene in
presence and absence of weak modulation. I will mostly emphasize how to
generate valley polarized transport by exploiting opposite tilting of
the
Dirac cones at two valleys. Finally, if time permit, I will try to cover
few more topics like
electronhole conversion phenomena (Andreev reflection) in thin
topological
insulator, Cooper pair splitting in a graphene based beam splitter
geometry
and driven conductance in semiDirac material.

 26.09.2018,
at 2.30 pm
Seminar room, PAMU (Kolmogorov Bhavan)

 Exclusivity principle and unphysicality of the GargMermin correlation
Speaker:
Aravinda, IMSc Chennai (via skype)
Abstract:
The question concerning the physical realizability of a probability distribution is quite important in quantum foundations. Recent studies emphasized a principle which was first indicated by Specker. This principle, called Specker's principle, bounds physically realizable correlations. We study Specker's observation in the scenario that involves three inputs each with two outputs. Then using only linear constraints imposed on joint probabilities by this principle, we reveal the unphysical nature of GargMermin (GM) correlation. Interestingly, GM correlation was proposed to falsify the following suggestion by Fine: if the inequalities of Clauser and Horne (CH) holds, then there exists a deterministic local hiddenvariable model for a spin1/2 correlation experiment of the EinsteinPodolskyRosen type, even when more than two observables are involved on each side. Our result establishes that, unlike in the CH scenario, the local orthogonality principle at single copy level is not equivalent to the nosignaling condition in the GM scenario.

 26.09.2018,
at 3.20 pm
Seminar room, PAMU (Kolmogorov Bhavan)

 FluctuationDissipation in de Sitter Universe
Speaker:
Ashmita Das, IIT Guwahati (via skype)
Abstract:
It is well known that a comoving observer/detector in FLRW (FriedmannLemaitreRobertsonWalker) Universe detects particle radiation in the conformal vacuum (conformal to Minkowski spacetime). A particular wellknown example of this is a comoving detector in de Sitter spacetime which percieves thermal radiation even from the conformal vacuum. In this work we address the question that what would be the behaviour of these produced particles from the perspective of a comoving observer in de Sitter spacetime? We calculate the correlation function of the random force due to the particle radiation as measured by the comoving detector and obtain that, it follows fluctuationdissipation theorem. This indicates that the radiated particles exhibit Brownian like motion in this thermal bath.

 26.09.2018,
at 4.10 pm
Seminar room, PAMU (Kolmogorov Bhavan)

 Exploring New Vistas in Cosmology
Speaker:
Satadru Bag, IUCAA Pune (via skype)
Abstract:
The past two decades have witnessed a tremendous growth in our understanding of cosmology. This understanding has come about because of detailed theoretical modelling on the one hand and cuttingedge observations on the other. Despite the rapid advance in observational techniques there still remain several aspects of theoretical cosmology which are not fully understood. These open questions pertain to the initial bigbang singularity, the present epoch of accelerated expansion and the epoch of the cosmological reionization of hydrogen. However one hopes that upcoming stateoftheart surveys, well complemented by the recent progress in simulations, will allow one to answer at least some of these open questions in the near future. My doctoral research is focused on revisiting several important open questions in cosmology from new theoretical points of view. In particular, the thesis sheds light on (i) alternatives to the initial bigbang singularity, (ii) properties of dark energy beyond the concordance model (LCDM), (iii) the reionization process in which neutral hydrogen in the intergalactic medium was ionized from the first light sources during
redshift 620. Focusing on the last two topics, in this talk, I will discuss braneworld models of dark energy and probing reionization using Minkowski functionals and Shapefinders.

 25.09.2018,
at 2.30 pm
Seminar room, PAMU (Kolmogorov Bhavan)

 Extreme events: Dynamical origins and Predictability
Speaker:
Arindam Mishra, Jadavpur University
Abstract:
Extreme events such as rogue waves, tsunamis, earthquakes, share market crashes, can occur spontaneously in nature and have huge adverse consequences. Because of their devastating impact to human life and economy, quantification, prediction and mitigation of extreme events are highly desirable. In many situations, the evolution of natural, engineering, and social phenomena can be represented by mathematical models able to incorporate how the properties of the system change in time. In the same way, we study extreme events from the dynamical system’s point of view. My presentation will be divided in three parts. Firstly, I will talk about some general aspects of extreme events. Next I will talk about our recent work where we have found two routes of extreme events, namely, quasiperiodic and intermittency, in coupled bursting neurons. We considered two HindmarshRose neurons interacting through chemical synaptic coupling. Quasiperiodic and intermittent routes to extreme events are observed for purely inhibitory and excitatory coupling respectively. The probability distribution of events shows dragonking like behavior where large events are outliers to a power law. In the last section of my presentation I will discuss my future research plans. In future research I will focus on the quasiperiodic route and on the prediction of extreme events. In case of prediction we will try to define measurable observables that contain early warning signs of upcoming extreme events. When extreme event occurs, the signal becomes chaotic and the sensitivity to initial conditions leads to an inherent uncertainty in chaotic systems even when the system model is deterministic. As a result some uncertainties appear in the prediction and we want to quantify this.

 25.09.2018,
at 3.00 pm
Seminar room, PAMU (Kolmogorov Bhavan)

 Warm Inflation: A better realisation of the accelerated expansion of the nascent Universe?
Speaker:
Mayukh Raj Gangopadhyay, SINP Kolkata
Abstract:
Cosmological observations are in very good agreement with an universe that is expanding, spatially flat, homogeneous and isotropic on large scales where the large scale structure originated from primordial perturbations with a nearly gaussian
and scaleinvariant spectrum. On the theoretical side, the paradigm of slowroll inflation, a period of accelerated expansion in the early history of the universe, predicts such a primordial spectrum starting with the fluctuations of the inflaton field. In general there are two realisation of the inflationary dynamics: cold inflation and warm inflation. In this talk, I will explain this two dynamical realisations of inflation. The constraints from the observations by Planck satellite has ruled out most of the so called ‘text book’ cold inflation potentials such as quartic potential. I will explain even a quartic potential in warm inflationary paradigm can survive the tight constraints from observations. Finally, I would try to explore the future course of research in the field of inflation and alternative scenarios to inflation.

 11.09.2018,
at 2.30 pm
Seminar room, PAMU (Kolmogorov Bhavan)

 Black hole entropy from the first principles revisited
Speaker:
Abhishek Majhi, UNAM, Mexico
Abstract:
Perhaps one of the most intriguing features of Einstein's
theory of general relativity is the prediction of black holes, which
can only grow or remain in equilibrium. However, if we quantize
matter, then the theory predicts that a black hole emits thermal
radiation and behaves like a thermodynamic system possessing an
entropy given by one fourth of its area in Planck units ). This fact
necessitates the need of a quantum theory of black hole providing the
description of microstates that can lead to a derivation of the
entropy from the first principles. One such theory, providing the
description for microstates of black holes, is Loop Quantum Gravity
(LQG). In LQG, one quantizes general relativity in the canonical
approach. Unfortunately, the derivation of the entropy in the LQG
framework is plagued with a fine tuning problem of a free parameter
of the theory. I shall discuss about a possible way to tackle this
problem by introducing a new definition of entropy.

 07.09.2018,
at 3.30 pm
Seminar room, PAMU (Kolmogorov Bhavan)

 Bounds on Sum of Neutrino Masses in Various Cosmological Scenarios
Speaker:
Shouvik Roychoudhury, HRI, Allahabad
Abstract:
We present strong bounds on the sum of three active neutrino
masses ($\sum m_{\nu}$) using selected cosmological datasets and priors in
various cosmological models. We use the following baseline datasets:
Cosmic Microwave Background (CMB) temperature data from Planck 2015,
Baryon Acoustic Oscillations measurements from SDSSIII BOSS DR12, the
newly released Type Ia supernovae (SNe Ia) dataset from Pantheon Sample,
and a prior on the optical depth to reionization from 2016 Planck
Intermediate results. We constrain cosmological parameters with these
datasets with a Bayesian analysis in the background of $\Lambda CDM$ model
with 3 massive active neutrinos. For this minimal $\Lambda CDM+\sum
m_{\nu}$ model we find a upper bound of $\sum m_{\nu} <$ 0.152 eV at
95$\%$ C.L. Adding the high$l$ polarization data from Planck strengthens
this bound to $\sum m_{\nu} <$ 0.118 eV, which is very close to the
minimum required mass of $\sum m_{\nu} \simeq$ 0.1 eV for inverted
hierarchy. This bound is reduced to $\sum m_{\nu} <$ 0.110 eV when we also
vary r, the tensor to scalar ratio ($\Lambda CDM+r+\sum m_{\nu}$ model),
and add an additional dataset, BK14, the latest data released from the
BicepKeck collaboration (which we add only when $r$ is varied). This
bound is further reduced to $\sum m_{\nu} <$ 0.101 eV in a cosmology with
nonphantom dynamical dark energy ($w_0 w_a CDM+\sum m_{\nu}$ model with
$w(z)\geq 1$ for all $z$). Considering the $w_0 w_a CDM+r+\sum m_{\nu}$
model and adding the BK14 data again, the bound can be even further
reduced to $\sum m_{\nu} <$ 0.093 eV. For the $w_0 w_a CDM+\sum m_{\nu}$
model without any constraint on $w(z)$, the bounds however relax to $\sum
m_{\nu} <$ 0.276 eV. Adding a prior on the Hubble constant ($H_0 =
73.24\pm 1.74$ km/sec/Mpc) from Hubble Space Telescope (HST), the above
mentioned bounds further improve to $\sum m_{\nu} <$ 0.117 eV, 0.091 eV,
0.085 eV, 0.082 eV, 0.078 eV and 0.247 eV respectively. This substantial
improvement is mostly driven by a more than 3$\sigma$ tension between
Planck 2015 and HST measurements of $H_0$ and should be taken cautiously.

 21.08.2018,
at 3.00 pm
Seminar room, PAMU (Kolmogorov Bhavan)

 Genuinely entangled subspace made of allpartition distillable
bipartite entanglement
Speaker:
Sristy Agrawal, IISER Kolkata
Abstract:
In a multipartite scenario quantum entanglement manifests its most
dramatic form when the system state is not a statistical mixture of
bipartite factorized density matrices, i.e., genuinely entangled.
Subspace of a multipartite Hilbert space, consists of such states
only, is called genuinely entangled subspace (GES). A GES is of
significant operational interest if it is bidistillable  all
the states supported on it contain free (distillable)
entanglement across all bipartitions. In this work we introduce the
notion of unextendible biseparable bases (UBB) that provides a
adequate method to construct GES. We construct two types 
symmetric and asymmetric  of such UBBs for every 3qudit
quantum system, with d greater than or equals to 3. Interestingly, we further show
that, the symmetric construction leads to a bidistillableGES. In a
complete contrast, we also provide example of genuinely entangled
states whose entanglement remain in bound form across every
bipartition.

 17.08.2018,
at 3.30 pm
Seminar room, PAMU (Kolmogorov Bhavan)

 Effects of adiabatic index on transonic solution of low angular momentum accretion flow
Speaker:
Ishika Palit, Center for Theoretical Physics PAS, Poland
Abstract:
Study of standing and oscillating shocks in accretion flows has become very important since it is recognized that the spectral states of black holes as well as QuasiPeriodic Oscillations (QPOs)
observed in light curves of black hole candidates are directly related to the radiative transfer properties of a compact Comptonizing region close to a black hole. More recently, the shock
existence was found for the disclike structure in hydrostatic equilibrium with low angular momentum both in pseudoNewtonian potential and in full relativistic approach . Thus shocks play a
significant role in governing the overall dynamical and radiative processes taking place in accreting matter. I will present the study of gamma dependence of shock waves of slightly rotating accretion
flows onto black holes for a more accurate explanation for QPOs observed in light curves of black hole.

 06.08.2018,
at 3.30 pm
Seminar room, PAMU (Kolmogorov Bhavan)

 Nonclassical spacetime in (loop) quantum gravity
Speaker:
Suddhasattwa Brahma, APCTP Korea
Abstract:
General relativity typically predicts singularities when
applied to high curvature regimes such as the very early universe or
within the cores of blackholes. Therefore, quantum gravity becomes
essential in describing the physics of such regions. In particular,
loop quantum gravity, when applied to such scenarios, leads to
singularityresolution due to nontrivial quantum corrections resulting
in the emergence of modified dynamics near Planck scales. However, a
quantum theory of gravity must also describe a theory of quantum
spacetime. In this talk, I shall focus on the emergence of
nonRiemannian spacetime due to loop quantum gravity corrections, the
main physical consequence of which is dynamical 'signaturechange'.
Similarities with other approaches such as the HartleHawking proposal
shall also be briefly discussed.

 07.08.2018,
at 3.30 pm
Seminar room, PAMU (Kolmogorov Bhavan)

 Astrophysical neutrinos, PeV events at IceCube, and the Direct Detection of Dark Matter
Speaker:
Dr. Aritra Gupta, TIFR
Abstract:
In this talk, we discuss the implications of the premise that any new, relativistic, highly energetic neutral particle that
interacts with quarks and gluons would create cascadelike events in the IceCube (IC) detector which would be observationally
indistinguishable from neutral current deepinelastic (DIS) scattering events due to neutrinos. Consequently, one reason for
deviations, breaks or excesses in the expected astrophysical powerlaw neutrino spectrum could be the flux of such a particle.
Motivated by features in the recent 1347day IceCube high energy starting event (HESE) data, we focus on particular
boosted dark matter (χ) related realizations of this premise, where χ is assumed to be much lighter than,
and the result of, the slow decay of a massive scalar (φ ) which constitutes a major fraction of the Universe's
dark matter (DM). We show that this hypothesis, coupled with a standard powerlaw astrophysical neutrino flux is
capable of providing very good fits to the present data, along with a possible explanation of other features in the
HESE sample: ie, a) the paucity of events beyond ~ 2 PeV b) a spectral feature resembling a dip in the 400 TeV  1 PeV region
and c) an excess in the 50100 TeV region. We also consider constraints from diffuse gamma ray backgrounds and find that it
is indeed very restrictive.

 28.02.2018,
at 3.00 pm
Seminar room, PAMU (Kolmogorov Bhavan)

 Dark Photon Searches and Bounds: Resonant Production in Beam Dump for 8Be anomaly
Speaker:
Anish Ghoshal,
Universit`a di Roma Tre and INFN, Italy
Abstract:
Search for dark photon and axionlike particles will be described and
present bounds on them will be shown. Such a candidate if responsible
for 8Be anomaly in the ATOMKI experiment can be produced in PADME
experiment in LNFINFN. Sensitivity and parameter space concerned
to this will be discussed.

 15.02.2018,
at 3.00 pm
Seminar room, PAMU (Kolmogorov Bhavan)

 Exotic pairs of stellar undeads: binary radio pulsars with compact companions
Speaker:
Manjari Bagchi,
IMSc Chennai
Abstract:
Binary radio pulsars with whitedwarfs or other neutron stars or black
holes as companions serve as excellent laboratories to test various
aspects of basic physics.
In this talk, I will explain how orbital and stellar properties (classical
and general relativistic) of pulsars, can be probed by timing
stable pulsars for long enough time. I will emphasize the prospects of
putting more stringent constraints on alternative theories of gravity with
the help of pulsar  black hole binaries (to be discovered). I will also
discuss the prospect of constraining dense matter equation of state by
timing neutron starneutron star binaries. Finally, I will give a brief
update on Indian efforts to detect nanoHz gravitational waves by timing
an ensemble of stable pulsars.

 07.12.2017,
at 4.15 pm
Seminar room, PAMU (Kolmogorov Bhavan)

 Granger Causality of Diffusion Processes
Speaker:
Prof. Dr. Jan Freund,
Complex Systems Group, ICBM, University of Oldenburg, Germany
Abstract:
The reconstruction of causal interactions between process components from empirical data, viz.
multivariate time series, is not possible from plain crosscorrelation analyses but can be done
in the context of Granger causality. Operational definitions are based on the assumption that
multivariate time series can be viewed as realizations of a class of linear stochastic processes,
usually vector autoregressive processes of order p (VAR[p]). For nonlinear dynamics this assumption
may be far from justified and transfer entropy (predictive information flow) was devised to treat
also strongly nonlinear dynamics – at the expense of diminished statistical power. Here I will
present an alternative approach that is based on a local linearization of a nonlinear diffusion
processes and that renders a Granger causality map which quantifies local prediction improvement
on an attractor. This generalization may prove useful for a characterization of brain dynamics or
for the analysis of multivariate data recorded at wind farms.

 07.12.2017,
at 3.30 pm
Seminar room, PAMU (Kolmogorov Bhavan)

 Critical Transitions Due to Shocks
Speaker:
Prof. Dr. Ulrike Feudel,
Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University Oldenburg, Germany
Abstract:
Natural or technical systems possess often several possible stable states of operation. Linear stability theory
is the appropriate tool to study the stability properties of such states with respect to small perturbations.
However, in nature perturbations are not necessarily small but are finite in size. We discuss two different
methods how to investigate the stability with respect to large perturbations such as single shocks.
Both methods aim to determine the distance to the boundary of the basin of attraction or the edge of
chaos, respectively. The first method determines the minimal destabilizing perturbation for large
dynamical systems such as networks. Besides the size of this perturbations the method allows also
to obtain the direction of this perturbation. We illustrate this method using pollinator networks
in ecology and energy networks and identify relations between the topology of a network and its
stability properties. The second method measures return times to a stable state at the edge of chaos.
This is demonstrated for the transition from laminar to turbulent motion in a shear flow.

 07.12.2017,
at 3.00 pm
Seminar room, PAMU (Kolmogorov Bhavan)

 The Search For the Smallest Chimera
Speaker: Prof. Tomasz Kapitaniak,
Division of Dynamics, Lodz University of Technology, Lodz, Poland
Abstract:
We demonstrate that chimera behavior can be observed in small networks consisting of three identical oscillators,
with mutual alltoall coupling. Three different types of chimeras, characterized by the coexistence of two coherent
oscillators and one incoherent oscillator (i.e., rotating with another frequency) have been identified, where the oscillators
show periodic (two types) and chaotic (one type) behaviors. Typical bifurcations at the transitions from full synchronization
to chimera states and between different types of chimeras have been described. Parameter regions for the chimera states are
obtained in the form of Arnold tongues, issued from a singular parameter point. Our analysis suggests that chimera states
can be observed in small networks relevant to various realworld systems.

 25.10.2017,
at 12.00 noon
Seminar room, PAMU (Kolmogorov Bhavan)

 Universal Laws of Thermodynamics
Speaker: Manabendra Nath Bera, ICFO, Barcelona, Spain
Abstract:
Thermodynamics is one of the most successful physical theories ever formulated. Though it was initially developed to deal with steam engines and, in particular, the problem of conversion of heat into mechanical work, it has prevailed even after the scientific revolutions of relativity and quantum mechanics. Despite its wide range of applicability, it is known that the laws of thermodynamics break down when systems are correlated with their environments. In the presence of correlations, anomalous heat flows from cold to hot baths become possible, as well as memory erasure accompanied by work extraction instead of heat dissipation.
Here, we generalize thermodynamics to physical scenarios which allow presence of correlations, including those where quantum entanglements are present. We exploit the connection between information and physics, and introduce a consistent redefinition of heat dissipation by systematically accounting for the information flow from system to bath in terms of the conditional entropy. As a consequence, the formula for the Helmholtz free energy is accordingly modified. Such a remedy not only fixes the apparent violations of Landauer's erasure principle and the second law due to anomalous heat flows, but it also leads to a reformulation of the laws of thermodynamics that are universally respected. In this informationtheoretic approach, correlations between system and environment store work potential. Thus, in this view, the apparent anomalous heat flows are the refrigeration processes driven by such potentials.

 19.09.2017,
at 3.30 pm
Seminar room, PAMU (Kolmogorov Bhavan)

 Estimating hidden signals violating isotropy underlying CMB maps
Speaker: Pavan Kumar Aluri, KIAS, South Korea
Abstract:
The standard model of cosmology is based on the cosmological
principal which states that the universe is homogeneous and isotropic on
very large scales. However cosmic microwave background which is a prediction
of Big Bang theory is found to have signals of isotropy violation on large
angular scales. One of the important aspects of CMB data analysis is to
remove the effect of local microwave emission from our own galaxy in order to
obtain pristine cosmic CMB signal. In this talk I will introduce a method
to estimate hidden signals violating isotropy underlying CMB sky directly
from a partial sky (masked CMB sky with some regions of the CMB sky
set to zero to avoid bias due to residual contamination). The effect of masking
on the estimation process is studied in detail, and an estimator is proposed
to directly use the partial sky data accounting for the mask. We then applied
it to PLANCK 2015 CMB maps as part of India/IUCAA Planck team. This
method is also applicable to recover weak lensing field.

 19.09.2017,
at 11.30 am
Seminar room, PAMU (Kolmogorov Bhavan)

 State independent contextuality advances oneway communication
Speaker: Debashis Saha, ITPA,
University of Gdansk, Poland
Abstract:
KochenSpecker theorem (more generally state independent contextuality (SIC)) is one of the most fundamental research areas in quantum physics. We are celebrating the 50th year of this discovery, and the role of quantum contextual correlations has been attracting an increasing attention in quantum information over the years, resulting in a rich variety of investigations. However, all the proposed applications of single system SIC lack in two important aspects. One is the universality of the quantum advantage for each SIC proof and more importantly, the advantages over classical system are in restricted scenarios instead of impossibility of a task itself. This talk presents a new perspective in this line of study by connecting SIC with the advantage of quantum channel over classical in oneway communication. We study a family of oneway communication problem based on orthogonal graphs of SIC sets of vectors. First, we reveal that if the dimension of the communicated system is bounded, sending quantum systems, which correspond to the vectors of each SIC set, is advantageous over classical communication. Then, we propose a general framework of oblivious communication and show that under certain oblivious condition for the same communication task, the quantum strategy corresponds to each KochenSpecker set outperforms classical communication of arbitrary large dimensional system. The quantum protocol allows the parties to accomplish the communication task perfectly. In the case of classical communication, we present a general method to obtain the best possible strategy. Our results provide a fully operational significance to single system SIC and open up the possibility of quantum information processing based on that.

 25.08.2017,
at 3.00 pm
Seminar room, PAMU (Kolmogorov Bhavan)

 On thermalization of twolevel quantum systems
Speaker: Sibasish Ghosh, IMSc, Chennai
Abstract:
It has always been a difficult issue in Statistical
Mechanics to provide a generic interaction Hamiltonian among the
microscopic constituents of a macroscopic system which would give rise
to equilibration of the system. One tries to evade this problem by
incorporating the socalled $Htheorem$, according to which, the
(macroscopic) system arrives at equilibrium when its entropy becomes
maximum over all the accessible micro states. This approach has become
quite useful for thermodynamic calculations using the (thermodynamic)
equilibrium states of the system. Nevertheless, the original problem
has still not been resolved. In the context of resolving this problem
it is important to check the validity of thermodynamic concepts 
known to be valid for macroscopic systems  in the microscopic world.
Quantum thermodynamics is an effort in that direction. As a toy model
towards this effort, we look here at the process of thermalization of
a twolevel quantum system under the action of a Markovian master
equation corresponding to memoryless action of a heat bath, kept at
certain temperature. A twoqubit interaction Hamiltonian (H_{th}, say)
is then designed  with a singlequbit mixed state as the initial
state of the bath  which gives rise to thermalization of the system
qubit in the infinite time limit. We then look at the question of
equilibration by taking the simplest case of a twoqubit system A + B,
under some interaction Hamiltonian H_{int} (which is of the form of
H_{th}) with the individual qubits being under the action of separate
heat baths of temperatures T_A, and T_B. Different equilibrium phases
of the twoqubit system are shown to appear  both the qubits or one
of them get cooled down. In the passing, we will also comment on
thermalization of a qubit using nonMarkovian evolution.

 07.07.2017,
at 3.00 pm
Seminar room, PAMU (Kolmogorov Bhavan)

 Periodically driven dynamics using tworate protocols
Speaker: Satyaki Kar,Theoretical Physics Department,
Indian Association for the Cultivation of Science, Kolkata
Abstract:
We study the nonequilibrium dynamics in closed quantum systems periodically driven
via time dependent parameters with two fiequencies ω_{1} and ω_{2} = rω.
Tuning of the ratio r there can
unleash plenty of dynamical phenomena to occur. Our study includes
integrable models like Ising and XY models in d=1 and Kitaev model in d=1 and 2 and
can also be extended to Dirac fermions in graphene. We witness the wavefunction
overlap or dynamic freezing to occur within some small/ intermediate frequency regimes
in the (ω,r) plane (with r≠0) when the ground state is evolved through single cycle of
driving. However, evolved states soon become steady with long driving and the freezing
scenario gets rarer. We extend the formalism of adiabaticimpulse ipproximation for
many cycles driving within our tworate protocol and show the nearexact comparisons at
small frequencies. An extension of the rotating wave approximation is also developed to
gather an analytical framework of the dynamics at high frequencies. Finally we compute
the entanglement entropy in the stroboscopically evolved states within the gapped phases of the
system and observe how it gets tuned with the ratio r in our protocol. The
minimally entangled states are found to fall within the regime of dynamical freezing.
In general, the results indicate that the entanglement entropy in our driven shortranged
integrable systems follow genuine nonarea law of scaling and show a convergence (with
a r dependent pace) towards volume scaling behavior as the driving is continued for long
time.

 08.06.2017,
at 3.30 pm
Seminar room, PAMU (Kolmogorov Bhavan)

 Fermionic dark matter and supernova SN1987A cooling
Speaker: Prasanta Kumar Das, BITS Goa
Abstract: Light dark matter (1  30 MeV) particles which can be pair produced in electronpositron
annihilation e^{}e^{+} → xx inside the supernova SN1987A core take away the energy released in
the supernova SN1987A explosion. Using the Raffelt's criteria on the energy loss rate and using
the optical depth criteria on the free streaming of the dark matter fermion, we find that the lower
bound on the scale Λ of the dark matter effective theory to be Λ ∼ 1.0E+08 TeV for mx = 30 MeV.
We extend our study in qdeformed statistics scenario and study the impact of it on the scale Λ.

 20.04.2017,
at 3.30 pm
Seminar room, PAMU (Kolmogorov Bhavan)

 Highlights from IceCube Neutrino Observatory
Speaker: Dr. Debanjan Bose, Sung Kyun Kwan University, South Korea
Abstract: IceCube is a cubickilometer neutrino observatory buried deep in the ice sheet at the geographic South Pole. A total of 5160 Digital Optical Modules (DOMs) are deployed on 86 strings forming a three dimensional detector array. Over the past decade, South Pole has emerged as a leading site for neutrino astronomy, particle astrophysics and neutrino physics. IceCube's discovery of a diffuse flux of astrophysical neutrinos started a new era of neutrino astronomy. In this talk I will describe IceCube neutrino detector and will discuss some of IceCube's results. Also, an overview will be given of plans to upgrade IceCube in the future.

 06.01.2017,
at 3.30 pm
Seminar room, PAMU (Kolmogorov Bhavan)

 Dense Axion Stars
Speaker: Abhishek Mohapatra, The Ohio State University, USA
Abstract: Axions can be described by a relativistic field theory with a real scalar field whose selfinteraction
potential is a periodic function of the field. Lowenergy axions, such as those produced in the early
universe, can be described more simply by a nonrelativistic effective field theory with a complex
scalar field. I discuss how to determine the coefficients in the expansion of the effective potential
in powers of the complex scalar field. I also discuss a possible way to systematically improve the
effective potential that resums terms of all orders in the complex scalar field. A simple application
of this effective potential is to axion stars. If the dark matter particles are axions, gravity can
cause them to coalesce into axion stars, which are stable gravitationally bound systems of axions.
The previously known solutions are dilute axion stars,whose mass cannot exceed a critical mass
of about 10 to the power (14) Solar mass. I discuss a possible new branch of dense axion stars whose mass can range
from about 10 to the power (20) Solar mass to about 1 Solar mass. If a dilute axion star with the critical mass accretes additional
axions and collapses, it could produce a bosenova, leaving a dense axion star as the remnant.

 05.01.2017,
at 3.30 pm
Seminar room, PAMU (Kolmogorov Bhavan)

 Resolution of a Singularity Problem in Gravity
Speaker: Dr. Anupam Mazumdar, Lancaster University, UK & Kapteyn Institute for Astronomy, The Netherlands
Abstract: I will show how to resolve cosmological and blackhole singularity problems
in the Einstein's theory of gravity at a classical level. In the infrared the theory mimics all the
predictions of Einstein's General Relativity. I will then construct a potential quantum theory
of gravity  which becomes asymptotically free in the ultraviolet.

 02.01.2017,
at 3.30 pm
Seminar room, PAMU (Kolmogorov Bhavan)

 Magnons in a honeycomb ferromagnet
Speaker: Saikat Banerjee, Nordic Institute of Theoretical Physics, Nordita
Abstract: The original discovery of the Dirac electron dispersion in graphene led naturally to the question of Dirac cone stability with respect to interactions, and the Coulomb interaction between electrons was shown to induce a logarithmic renormalization of the Dirac dispersion. With the rapid expansion of the list of compounds and quasiparticle bands with linear band touching, the concept of bosonic Dirac materials has emerged. At the single particle level, these materials closely resemble the fermionic counterparts. However, how the changed particle statistics affects the stability of Dirac cones has yet to be determined. Here we study the effect of interactions focusing on the honeycomb ferromagnet  where the quasiparticles are magnetic spin waves (magnons) with the same dispersion as the electrons for graphene. We demonstrate that magnonmagnon interactions lead to a significant renormalization of the bare band structure. The charge neutrality and Dirac spectrum of magnons result in finite lifetime effects with significant momentum dependence near the nodes and a temperature dependent shift of the magnon bands. We also address the question of the edge and surface states for a finite system. We applied these results to chromium trihalides CrX3 (X = F, Cl, Br and I), the class of ferromagnets where the magnetic Cr atoms are arranged in weakly coupled honeycomb layers. Our theory qualitatively accounts for hitherto unexplained anomalies in neutron scattering data from 40 years ago for CrBr3. We expand the theory of ferromagnets beyond the standard Dyson theory and point to new exciting physics of Bose systems on nonBravais lattices (e.g. honeycomb).

 29.12.2016,
at 2.00 pm
Seminar room, PAMU (Kolmogorov Bhavan)

 Vertical Structure of Disk Galaxies & their Dark Matter Halos
Speaker: Dr Arunima Banerjee, IUCAA
Abstract: According to the modern theory of galaxy formation, galaxies form because of cooling of baryons and
star formation at the centres of gigantic halos of dark matter. The cold neutral hydrogen (HI) layer of
the galactic disk serves as an effective tracer of the underlying gravitational potential of the dark matter
halo in nearby, edgeon spiral galaxies. In the first part of the talk, I will discuss how the density profile
of the dark matter halo can be constrained by using the observed HI rotation curve and the HI vertical
thickness, as applied to the superthin low surface brightness galaxy UGC 7321, the Andromeda (M31)
and our the Galaxy. In the second part, I will show how the superthin nature of the disk of the stars in
the low surface brightness galaxy UGC7321 can be traced back to the presence of a dense and compact
dark matter halo in this galaxy. Our findings may have important implications for the cosmology and
structure formation history of the universe.

 29.12.2016,
at 3.30 pm
Seminar room, PAMU (Kolmogorov Bhavan)

 Noncommutative spaces with generalised uncertainty principle and their implications in quantum information theory
Speaker: Dr Sanjib Dey, Centre de Recherches Mathematiques,
Universite de Montreal,
Canada
Abstract: The existence of spacetime noncommutativity is very promising in various fields of modern science. Several different types of noncommutative structure have been suggested depending on their significance in different contexts; such as, quantum gravity, quantum cosmology, string theory as well as quantum mechanics. We discuss about the construction of one such noncommutative framework originating from a mathematical background. The physical reality of such models are ensured by exploiting some standard techniques of PTsymmetric nonHermitian Hamiltonian systems, which is yet another interesting subject in recent days. Nevertheless, we study some interesting applications of this particular noncommutative structure in different areas of mathematics and physics, particularly, in quantum optics and quantum information theory.

 04.05.2016,
at 3.30 pm
Seminar room, PAMU (Kolmogorov Bhavan)

 Existence and Uniqueness of solution of ODE; an overview
Speaker: Swarup Poria, Department of Applied Mathematics, University of Calcutta
Abstract: The study of existence and uniqueness of solutions became important due to the lack of a general formula for solving nonlinear ordinary differential equations (ODE). Compact form of existence and uniqueness theory appears nearly 200 years after the development of the theory of differential equation. In this talk, we shall discuss briefly about existence and uniqueness of solutions of a first order ODE. Special emphasis will be given on the Lipschitz continuous functions.

 22.03.2016,
at 3.00 pm
Seminar room, PAMU (Kolmogorov Bhavan)

 A necessary condition for local distinguishability of twoqudit maximally entangled states completely characterises that of the generalized Bell states for $d = 4$
Speaker: Prof. Sibasish Ghosh, IMSC, Chennai
Abstract: The (im)possibility of local distinguishability of orthogonal multipartite quantum states still re mains an intriguing question. Beyond ${C\!\!\!I}^3 \otimes {C\!\!\!I}^3$, the problem remains unsolved even for maximally entangled states (MES). We develop a very simple necessary condition for the perfect local distin guishability of any set of MES in ${C\!\!\!I}^d \otimes {C\!\!\!I}^d$. This condition places constraints after the first round of measurement of the LOCC protocol, and, by doing so, reduces the complexity of the distin guishability problem, particularly for any set of $d$ no. of MES. This necessary condition solves the longstanding problem of the existence of $d$ locally indistinguishable orthogonal states taken from the set of generalized Bell states in ${C\!\!\!I}^d \otimes {C\!\!\!I}^d$ by showing that for d = 4, there indeed exist four locally indistinguishable generalized Bell states. The full classification of sets of four generalized Bell states in ${C\!\!\!I}^4 \otimes {C\!\!\!I}^4$ has been made, and it is shown that any four states from such a set are either locally indistinguishable or distinguishable by oneway LOCC using only projective measurements.

 06.01.2016,
at 3.00 pm
Platinum Jubilee Auditorium

 The Neutrino Story
Speaker: Sreerup Raychaudhuri, Tata Institute of Fundamental Research
Abstract: Neutrinos are the most mysterious particles known and many aspects of neutrinos still remain a mystery. This talk will survey, in simple,nontechnical language, the physics of these elusive particles, starting from their discovery in nuclear beta decay processes to the discovery of neutrino flavours and, most importantly, flavour oscillations which won the 2015 Nobel Prize. The role of neutrinos in astrophysics and cosmology will also be touched upon At the end, we will briefly discuss the upcoming Indian Neutrino Observatory and its physics.

 21.12.2015,
at 3.00 pm
PAMU Seminar Room (Kolmogorov Bhavan)

 Dynamical State Reduction Models: Pedagogic Introduction and Advantages
Speaker: Sujoy K. Modak, JSPS Fellow, KEK High Energy Accelerator Research Organization, Japan
Abstract: Dynamical State Reduction Models are modified version of quantum mechanics which were historically formulated to overcome certain problems associated with the Copenhagen interpretation of quantum mechanics. I shall discuss one promising version of them, known as ``Continuous Spontaneous Localization’’ (CSL) theory. Over the years they have evolved to give predictions that are verifiable/falsifiable. In recent times these theories were also used to explain generation of seeds of cosmic structures during inflation which is otherwise not understood. I shall briefly review these aspects and then mostly concentrate on my own work where a resolution to black hole information paradox is proposed using a tailored version of CSL theory.

 08.10.2015,
at 3.30 pm
PAMU Seminar Room (Kolmogorov Bhavan)

 Action Principle for General Relativity and its Relation to Null
Surfaces
Speaker: Sumanta Chakraborty, IUCAA
Abstract: Constructing a wellposed variational principle and
characterizing the appropriate degrees of freedom that need to be fixed at
the boundary are nontrivial issues in general relativity. I will discuss
a few toy examples in classical mechanics and field theory before going
into general relativity. For spacelike and timelike boundaries I will show
that the action principle for general relativity is well posed, only when
a suitable counterterm [the GibbonsHawkingYork (GHY) counterterm] is
added to the action principle. Also I will show that the degrees of
freedom to be fixed on the boundary are contained in the induced 3metric.
These results, however, do not directly generalize to null boundaries on
which the 3metric becomes degenerate. In this talk I will address the
following questions: (i) What is the counterterm that may be added on a
null boundary to make the variational principle wellposed? (ii) How do we
characterize the degrees of freedom which need to be fixed at the null
boundary?

 18.09.2015,
at 2.30 pm
PAMU Seminar Room (Kolmogorov Bhavan)

 Flat space holography: field theory
and gravitational aspects
Speaker: Dr. Rudranil Basu, IISER Pune
Abstract: The holographic principle, as inspired by string
theory is an important
concept that has helped in better understanding of various unsolved
physical problems which range from strongly interacting quantum field
theories to quantum gravity. Much of developments in this field however
has been in the context of negatively curved spacetime, ie in the guise
of AdS/CFT duality. One side of the duality deals with a spacetime with
gravitational interactions whereas the other side describes a quantum
field theory living at the boundary of that spacetime. We, on the other
hand, are studying how the principle of holography can work for physically
relevant flat (as opposed to negatively curved) spacetime scenarios.
In this talk I will describe advances made both in the gravity side as
well as the field theory side. Curiously enough, the field theory,
although conformal in nature, is one observed by very fast observers.

 15.09.2015,
at 2.30 pm
PAMU Seminar Room (Kolmogorov Bhavan)

 Search for Supersymmetry: Some
avenues less explored
Speaker: Dr. Arindam Chatterjee, IISER Pune
Abstract: After the discovery of Higgs at LHC, search
for Beyond Standard Model
(BSM) Physics is in full swing. Supersymmetric theories provide a well
motivated extension of the Standard Model. Apart from addressing the
hierarchy problem, Rparity conserving supersymmetric scenarios also
assure the stability of the Lightest Supersymmetric particle (LSP).
The LSP, if neutral, can be a good Dark Matter (DM) candidate. Therefore,
the nature of the LSP, in such scenarios, can be probed or constrained
using both Dark Matter (DM) and collider searches. At LHC, the decay of
strongly interacting sparticles, which can have large production
crosssections, can lead to different signals for different LSPs.
We consider two different scenarios in this context: one featuring a
leftsneutrino as the LSP and the other with a neutralino as the LSP.
We show that in both cases distinct collider signals from the stop sector
may be observed in the (near) future. The viability of these LSPs as Dark
Matter candidates are also explored.
In the second part of the talk, we will discuss the possibility
of accommodating an inflaton candidate within the minimal supersymmetric
model in the context of ``inflectionpoint inflation". Further, we will
comment on generic features and constraints on these scenarios in the
light of recent data from PLANCK and BICEP.

 19.08.2015,
at 3.30 pm
PAMU Seminar Room (Kolmogorov Bhavan)

 Quantum Rational Secret Sharing
Speaker: Dr. Goutam Paul, Cryptology and Security Research
Unit, ISI
Abstract: A rational secret sharing scheme is a game in
which each party responsible for reconstructing a secret tries to maximize
his or her utility by obtaining the secret alone. While there exist schemes
for classical rational secret sharing, quantum secret sharing schemes,
derived either from quantum teleportation or from quantum error correcting
code, do not succeed when we assume rational participants. This is because
all the existing quantum secret sharing schemes consider that the secret
is reconstructed by a party chosen by the dealer. We, for the first time,
propose a quantum secret sharing scheme which is resistant to rational
parties. The proposed scheme achieves fairness, correctness and strict
Nash equilibrium.

 08.07.2015,
at 3.30 pm
PAMU Seminar Room (Kolmogorov Bhavan)

 Collective dynamics of nonlinear
oscillators
Speaker: Dr. Punit Parmananda, Physics Department, IIT Bombay
Abstract: The dynamics of the Mercury Beating Heart (MBH)
system is analyzed experimentally. Subsequently, two such oscillators were
coupled and the resultant synchronization phenomena studied. Finally, the
collective dynamics for an ensemble of MBH oscillators were investigated,
and Kuramoto transitions were verfied experimentally. The dynamics of the
Mercury Beating Heart (MBH) system is analyzed experimentally. Subsequently,
two such oscillators were coupled and the resultant synchronization
phenomena studied. Finally, the collective dynamics for an ensemble of
MBH oscillators were investigated, and Kuramoto transitions were verfied
experimentally.

 01.06.2015,
at 3.30 pm
PAMU Seminar Room (Kolmogorov Bhavan)

 Associated Higgs production with a Z boson in the NonCommutative Standard Model
Speaker: Dr. Prasanta Kumar Das, BITSPilani
Abstract: We Study the associated Higgs production with Z
boson at future linear colliders in the framework of the minimal
noncommutative standard model. Using the SeibergWitten map, we calculate
the production crosssection considering all orders of the noncommutative
parameter Θμν. We consider the effect of earth’s rotation on the orientation
of θμν with respect to the laboratory frame and thus on the total
crosssection, it’s azimuthal distribution etc for the machine energy
ranging from 0.5 TeV to TeV corresponding to the noncommutative scale
Λ ≥ 0.5 TeV.

 13.05.2015,
at 3.30 pm
PAMU Seminar Room (Kolmogorov Bhavan)

 Universal detection of bipartite entanglement in measurementdeviceindependent way
Speaker: Prof. Sibasish Ghosh, IMSc
Abstract: Whenever a source produces a bipartite state, how to verify experimentally whether the state is entangled? One generally performs measurement  to be realized locally on the individual subsystems  of some observable (called as entanglement witness operator (EWO)) on the state for this verification. Unfortunately, the detectors themselves may not be reliable to the extent that even a separable state may be revealed as an entangled one. Is it at all possible to witness entanglement in a measurementdeviceindependent (MDI) way? The answer turned out to be in the affirmative through a recent work by Branciard et al. [Phys. Rev. Lett., vol. 110, pp. 060405 (2013)], provided a form of an EWO, witnessing the entanglement in the `given' state is known beforehand. It is important to note here that any such EWO depends generally, on the given state with an exception in the case of twoqubit states. In fact, it was shown by Augusiak et al. [Phys. Rev. A, vol. 77, pp. 030301 (2008)] that entanglement in an arbitrary twoqubit state can be witnessed by a stateindependent EWO provided four copies of such a state are available. Using this latter result, we give a scheme here to detect entanglement in any twoqubit state in a stateindependent but MDI way. We also provide here a scheme to distinguish between PPT and NPT states in stateindependent but MDI way  valid for any dimension. Finally, we conjecture that entanglement in any bipartite state can always be witnessed in a stateindependent but MDI way, whatever be the dimension of the system.

 11.05.2015,
at 3.30 pm
PAMU Seminar Room (Kolmogorov Bhavan)

 PT symmetric optical lattices : some intriguing features
Speaker: Dr. Anjana Sinha, Jadavpur University
Abstract: With the experimental verification of PT symmetric concepts in optics, PT symmetric
optical lattices have opened up a very interesting area of study in the last few years.
These systems have complex refractive index of the form n(x) = n0+nR(x)+inI(x) with
nR,I less than n0 . The intriguing behaviour of the scattering coefficients — reflection T and
transmission R — is quite different from what we observe in conventional quantum me
chanics. The scattering amplitudes do not necessarily add up to unity. Rather, they obey
a modified relationship. Furthermore, their behaviour depends on the direction of the
incident wave, and also on the parameters in the optical potential. In case of spontaneous
breakdown of PT symmetry at some value of the potential parameter, one observes the
fascinating phenomena of Spectral Singularity, where reflection and transmission coeffi
cients tend to diverge.
The talk will discuss some interesting features related to scattering in PT symmetric
optical devices.

 08.05.2015,
at 3.30 pm
PAMU Seminar Room (Kolmogorov Bhavan)

 Constraining the Nature of Dark Energy from
Cosmological Observations
Speaker: Dr. Ujjaini Alam
Abstract: Dark energy is one of the most tantalizing mysteries in
current cosmological research. A host of observations confirm that
about twothirds of the energy content of the universe comprises of
this negativepressure ''dark energy'' component that causes the expansion
of the universe to accelerate. In my talk, I will explore two distinct
facets of dark energy research. Many different theoretical models have
been suggested for dark energy. One aspect of my research is to study
these theoretical models, such as early dark energy and modified gravity
models, and constrain them in light of current observations. A second
approach to the dark energy problem is to study the various observations
available to us with different statistical tools, and optimize these
methods for obtaining maximum information on the dark energy parameters.
Using these two complementary approaches in conjunction, we expect to shed
light on the nature of dark energy.

 27.04.2015,
at 3.30 pm
PAMU Seminar Room (Kolmogorov Bhavan)

 Exploring Novel Quantum Phenomena in Photonic Settings: From Fundamentals to
Technological Applications
Speaker: Dr. Somnath Ghosh, Calcutta University
Abstract: Corroborating the analogy between nonHermitian quantum system and counterpart optical
geometries with suitable amount of simultaneous gain and loss, I plan to discuss an innovative
scheme for asymmetric mode conversion in a coupled optical system under certain condition in
the strong coupling regime (beyond the PT symmetry limit) exploiting singularities (in eigen
values and eigen vectors) associated with avoided crossings (in the regime where adiabatic
evolution fails) as an efficient tool. Novel propagation dynamics of light wave through this
special optical structure is evident, which is being explored in the context of optical isolation for
integrated/ onchip photonics applications.
From fundamental physics point of view and applications in photonics like realizing compact
random lasing in one dimensional disordered system (longitudinal direction mapped onto time), I
plan to focus on my latest findings to demonstrate that the simultaneous presence of spatial and
refractive index disorder favors Anderson localization of light. This study has revealed several
underlying interesting features of light confinement to a localized state in such a medium of
finite length and showed that beyond the point of localization, light indeed propagates without
any diffractive spread in the transverse direction in a disordered lattice, a feature that mimics
waveguidelike propagation. The hallmark stochastic nature of the phenomena has been
encountered in both simulations and experiments using ultrafast laser inscription (ULI)
technique.

 24.04.2015,
at 12.30 pm
PAMU Seminar Room (Kolmogorov Bhavan)

 Generating Finite Dimensional Integrable Nonlinear Dynamical Systems
and their Quantization
Speaker: Prof. M. Lakshmanan, FNA,FTWAS, Centre for Nonlinear Dynamics,
Bharathidasan University,
Tiruchirapalli
Abstract: We present an overview of some recent progress made in identifying and
generating finite dimensional integrable nonlinear dynamical systems,
exhibiting oscillatory and other solution properties, including
quantum aspects. Particularly we will concentrate on Lienard type
nonlinear oscillators and their generalizations and their coupled
versions. Specific systems include MathewsLakshmanan oscillators,
modified Emden equations, isochronous oscillators and generalizations.
Nonstandard Lagrangian and Hamiltonian formulations of some of these
systems will be briefly touched upon. Nonlocal transformations and
linearization aspects will be briefly discussed.

 21.11.2014,
at 3.00 pm
NAB 2 (Kolmogorov Bhavan)

 Ancilla assisted suppression of decoherence
Speaker: Sibasish Ghosh, IMSc Chennai
Abstract: Most of the quantum mechanical systems are open in nature  they often interact with their surroundings quite fast, leading to decoherence. This issue of decoherence is a major obstacle in physical realisations of different quantum information processing schemes. It not only destroys quantum coherence in individual subsystems, but as a result of that, it also (in general), destroys entanglement among the subsystems. Different mechanisms have been developed  mostly specific to systems concerned  to control this decoherence effect, most of which aim at weakening the systemenvironment interaction in a controlled manner. In the present work, we instead, aim at inserting an ancillary system so that the environment acts jointly on the system and the ancilla. Considering Markovian type environmental effect, we find that one can suppress both decoherence as well as decay of entanglement by this method. Moreover, we find that larger the size of the ancilla, better is the suppression mechanism.

 11.11.2014,
at 3.00 pm
NAB 2 (Kolmogorov Bhavan)

 Numerical Simulation with relativistic equation of state of astrophysical plasma
Speaker: Indranil Chattopadhyay, Aryabhatta Research Institute for observational sciences (ARIES)
Abstract: We discuss computational fluid dynamics in general and how they are applied in various
astrophysical scenario. We focus on how to incorporate the relativistic equation of state of
multispecies fluid in relativistic hydrodynamic code.
We show that in the transrelativistic temperature regime, composition plays a very important
role in the temporal evolution of relativistic hydrodynamics. We discuss the impact this would
have on observations.

 07.11.2014,
at 3.00 pm
NAB 2 (Kolmogorov Bhavan)

 Spinor field and anisotropic cosmological models
Speaker: Bijan Saha, D.Sc, Joint Institute for Nuclear Research
Dubna, Moscow reg.
Abstract: Within the scope of a Bianchi typeI anisotropic cosmological model we study the evolution of the Universe filled with nonlinear spinor field. It is found that due to some specific behavior of the spinor field it imposes some restriction either of spinor field components or on metric functions. It is found that for some suitable choice of parameters the spinor field can give rise to singularity free spacetime; accelerate the isotropization process; explain the late time accelerated mode of expansion and simulate perfect fluid, quintessence, Chaplygin gas and different type of Dark energy.

 28.08.2014,
at 3.30 pm
NAB 1 (Kolmogorov Bhavan)

 Dynamical Localization in quantum spinfermion systems: Suppressing the
Relaxation of quantum magnets by a coherent periodic drive
Speaker:Dr. Analabha Roy , SINP.
Abstract: Dynamical localization is one of the most startling manifestations of
quantum interference, where the evolution of a simple system is frozen out
under a suitably tuned coherent periodic drive. In this talk, I shall
demonstrate that such freezing occurs even in the presence of extensive
disorder in a manybody system. I consider a disordered quantum Ising chain
where the transverse magnetization relaxes exponentially with time with a
decay timescale [image: \tau] due to random longitudinal interactions
between the spins. Using
Floquet theory and Renormalization Group techniques, I will show that this
relaxation can be slowed down ([image: \tau] is enhanced) by orders of
magnitude due to employing periodic drives at certain specific values of
frequencies and amplitudes (the freezing condition) regardless of the
initial state. Under the freezing condition, [image: \tau] diverges
exponentially with the drive frequency [image: \omega]. The results can be
easily extended to a larger family of disordered fermionic and bosonic
systems. I will then discuss universality in the relaxation behavior,
generalizations to open quantum systems, as well as using this phenomenon
to prevent the propagation of errors in systems of quantum bits.

 23.07.2014,
at 15.30
PAMU Computer Lab (Kolmogorov Bhavan)

 Minimal statedependent proof of measurement contextuality for
a qubit
Speaker: Dr. Sibasish Ghosh, IMSc, Chennai .
Abstract: We show that three unsharp binary qubit measurements are enough
to violate a generalized noncontextuality inequality, the LSW inequality,
in a statedependent manner. For the case of trine spin axes we calculate
the optimal quantum violation of this inequality. Besides, we show that
unsharp qubit measurements do not allow a stateindependent violation of
this inequality. We thus provide a minimal statedependent proof of
measurement contextuality requiring one qubit and three unsharp
measurements. Our result rules out generalized noncontextual models of
these measurements which were previously conjectured to exist. More
importantly, this class of generalized noncontextual models includes the
traditional KochenSpecker (KS) noncontextual models as a proper subset,
so our result rules out a larger class of models than those ruled out by a
violation of the corresponding KSinequality in this scenario.

 09.07.2014,
at 15.00
PAMU Computer Lab (Kolmogorov Bhavan)

 Resurrecting leftsneutrino Dark Matter in SUSY in the light of direct Dark Matter searches
Speaker: Dr. Arindam Chatterjee , HRI Allahabad .
Abstract: In the minimal supersymmetric standard model (MSSM) the lightest
superpartner of the lefthanded neutrinos is ruled out as a Dark Matter
candidate because of its large elastic crosssection with the nucleus
mediated via Zboson. We resurrect it by extending the MSSM with two
(heavy) triplets of opposite hypercharge. The addition of these triplets not
only generates small Majorana mass for the lefthanded active neutrinos,
but also makes sneutrino (LSP) a candidate for dark matter (of inelastic
type). We then discuss the relevant parameter space which can give rise
to the right amount of (thermal) relic abundance while satisfying the current direct detection constraints from Xenon100 and LUX.

 25.06.2014,
at 15.00
PAMU Seminar Room (Kolmogorov Bhavan)

 Deviceindependent quantum key distribution based on Hardy’s paradox
Speaker: Dr. Ramij Rahaman, University of Allahabad .
Abstract: We present a secure deviceindependent quantum key distribution (QKD) scheme based on Hardy’s paradox. Hardy’s paradox uses four conditions impossible for classical systems, but satisfied by predictions for a unique quantum twoparticle state. In comparison with protocols based on Bell inequalities, our scheme has several novel features: (a) The bits used for the secret key do not come from the results of the measurements on an entangled state but from the choices of settings which are harder for an eavesdropper to influence; (b) Instead of a single security parameter (a violation of some Bell inequality) a set of them is used to estimate the level of trust in the secrecy of the key. This further restricts the eavesdropper's options. We prove the security of our protocol for both ideal and noisy cases.

 28.04.2014,
at 15.30
NAB 1 (Kolmogorov Bhavan)

 Applicability of First Law for Rindler Horizon
Speaker: Dr. Srijit Bhattacharjee, Department of Physics, IISER Mohali.
Abstract: The physical process version of the first law for black holes states that the passage of energy and angular momentum through the horizon results in change in area κ/8π ∆A = ∆E − Ω∆J, so long as the passage is quasistationary. The validity of the process first law crucially depends upon the control over the horizon shear and expansion such that they remain small. I will discuss how such control can be established in the case of a weakly selfgravitating object crossing Rindler horizon.

 15.04.2014,
at 15.30
NAB 1 (Kolmogorov Bhavan)

 Turbulence in mobilebed streams
Speaker: Prof. Subhasish Dey, Indian Institute of Technology Kharagpur.
Abstract: The study is devoted to quantify the nearbed turbulence parameters in mobilebed flows with
bedload transport. A reduction in nearbed velocity fluctuations due to the decrease of flow
velocity relative to particle velocity of the transporting particles results in an excessive near
bed damping in Reynolds shear stress (RSS) distributions. The bed particles are associated with
the momentum provided from the flow to maintain their motion overcoming the bed resistance.
It leads to a reduction in RSS magnitude over the entire flow depth. In the logarithmic law, the
von Kármán coefficient decreases in presence of bedload transport. The turbulent kinetic energy
budget reveals that for the bedload transport, the pressure energy diffusion rate near the bed
changes sharply to a negative magnitude, implying a gain in turbulence production. According to
the quadrant analysis, sweep events in mobilebed flows are the principal mechanism of bedload
transport. The universal probability density functions for turbulence parameters given by Bose
and Dey have been successfully applied in mobilebed flows..

 06.02.2014

 A short overview on Higgs physics at the Large Hadron Collider.
Speaker: Dr Siba Prasad Das, Institute of Physics
, Bhubaneswar.

 Sept. 17, 2013

 Turbulence in Loose Boundary Streams
Speaker: Sankar Sarkar, Sikkim Manipal Institute of Technology
, INDIA.

 Sep. 6, 2013

 Exact results in two dimensional hydrodynamics with gauge and gravitational anomalies.
Speaker: Prof. Rabin Banerjee, SNBNCBS Kolkata,, India.
Abstract:
We give the exact constitutive relations that express the stress tensor and the charged current in terms of the fluid variables in two dimensional hydrodynamics in the presence of gauge and gravitational anomalies. We distinguish between anomalies in chiral and nonchiral theories. The interplay between conformal invariance and diffeomorphism invariance is highlighted. The modifications in the ideal fluid constitutive relations in the presence of chirality are illustrated.

 June 04, 2013

 The nonlinearity of the Cepheid PeriodLuminosity relation.
Speaker: Prof. Shashi Kanbur, SUNY Oswego, USA.
Abstract:
The Cepheid PeriodLuminosity relation is of paramount importance in
developing an extragalactic distance scale
that is independent of the Cosmic Microwave Background. Developing such an
independent distance scale that is accurate
to less than 3% is important in placing constraints on the dark energy
equation of state. For the last 70 years, the assumption has been that the
PL relation is linear. Here we review recent evidence supporting a
nonlinear PL relation, the impact on estimates of Hubble's constant and on
stellar pulsation and also comment on recent advances in the statistical
description of the quantitative structure on variable star light curves.

 May 9, 2013

 Art of writing academic article and modern trends in publishing.
Speaker: S. K. Venkateshan, TNQ Books and Journals, India.
Abstract:

 May 10, 2013

 Turbulance in fluid flows and the breaking of implicit symmetries.
Speaker: S. K. Venkateshan, TNQ Books and Journals, India.
Abstract:

 February 25, 2013

 Study of Astrophysical Sources in Very High Energy Regime
Using Ground Based Gammaray and Neutrino Telescopes.
Speaker: Dr. Debanjan Bose, Vrije Universiteit Brussel, Belgium.
Abstract:
In this presentation I will talk about sources like pulsars,
AGN and GRBs in very high energy regime. At these energies
we study nonthemal Universe. From observations we know that
relativistic effects are taking place inside these objects.
These sources emit high energy gammarays and are also expected
to emit neutrinos. I will explain detection principle of gammarays
and neutrinos with earth based detectors. I will also discuss some
important observations for the above mentioned sources with
ground based Cherenkov telescopes and IceCube neutrino observatory.

 January 10, 2013

 Dark Energy Model Building and Observational Signatures
Speaker: Dr. Anjan Ananda Sen, Jamia Millia Islamia, New Delhi, India.
Abstract:
In this talk I shall review the current research on the late time acceleration of
the Universe, which is one of the most challenging problems for cosmologists at present.
I shall review different approaches to explain such a late time acceleration, in particular the scalar field models.
I shall also review the current status of the observational aspects for the dark energy models.

 November 30, 2012

 Statistical physics of glasses
Speaker: Prof. Deepak Dhar, Tata Institute of Fundamental Research, Mumbai.
Abstract:
In this talk, after a general introduction to the problem of describing the glassy state,
I will describe our work on a simple model where we explicitly take into account the fact
that ergodicity is broken, and one should calculate averages of physical quantities using restricted
partition functions, that sum only over accessible states of the system.

 November 23, 2012

 Black Holes in Your Bathtub
Speaker: Dr. Tapas K Das, Harish Chandra Research Institute, Allahabad.
Abstract:
I plan to talk about the analogue gravity phenomena, where one can create certain astrophysical (black hole) and cosmological
(Friedmann Robertson Walker expanding Universe) spacetime in the laboratory, using classical (water in a bathtub or wash basin, for example) or
quantum (Bose Einstein Condensates or liquid Helium, for example) fluids. In a series of papers, I have recently developed, for the first time in the literature,
an analytical model which studies the analogue spacetime embedded within the relativistic accreting fluid onto astrophysical black holes.
This is a unique example of the classical analogue model naturally found in the Universe where the analogue space time is studied in the strong gravity
environment. Such a configuration is the only analogue system available so far which contains both the gravitational as well as the acoustic horizons.

 November 15, 2012

 Probing the Universe's first light: Statistical detection of reionization 21 cm signal
Speaker: Dr. Kanan K. Datta, , Stockholm University, Sweden.
Abstract:
The cosmic reionization is one the most important missing pictures in the history of our Universe. It is believed that
during this epoch the first sources of light (e.g first stars, quasars) formed in the Universe and they subsequently
reionized the neutral hydrogen in the intergalactic medium. Radio interferometric observations of redshifted 21cm
radiation are considered to constitute the most promising tool to probe the reionization epoch. The first generation
radio telescopes (e.g, GMRT, LOFAR, MWA) are trying to detect the signal statistically. I will discuss the statistical
quantities that will be measured by such observations. The statistical detection of ionized regions around bright reionizing
sources by means of a matched filter technique will also be discussed.
At the end I will also discuss constraints on reionizing source parameters that can be achieved by instrument like LOFAR.

 July 9, 2012

 Parameter estimation and data analysis in Cosmology
Speaker: Trina Chakraborty, Indian Statistical Institute, India
Abstract:
The observational evidence for the current accelerated expansion of the universe is presented. Emphasis has been laid on a number of
scalar field dark energy models besides the conventional cosmological constant. To verify the signatures of dynamical dark energy models,
diagnostic parameters will be discussed in details and how they are extracted out from observations.
Further, methodology for estimation of various cosmological parameters from single dataset or combination of datasets will be presented.

 July 9, 2012

 Field theory and particle physics aspect of early universe
Speaker: Sayantan Choudhury, Indian Statistical Institute, India
Abstract:
We propose two models of inflation in the framework of braneworld and standard cosmology. First starting from bulk supergravity we
construct the inflaton potential on the brane and employ it to investigate for the consequences to inflationary paradigm. To this end, we derive the
expressions for the important parameters in brane inflation, which are somewhat different from their counterparts in standard cosmology. We have
studied extensively reheating phenomenology, which explains the thermal history of the universe and leptogenesis through the production of thermal
gravitino. Next we propose another model of inflation originated from gauge invariant MSSM flat directions comprising of QQQL, QuQd, QuLe and uude.
To this end, we further estimate the observable parameters for both the models and find them to fit well with recent observational data. Finally, we analyze one loop
RG flow to determine the appropriate parameter space for inflation.

 07062012

 Energy Efficiency in Architectural Designs in the Indus Valley Civilization: Lessons learnt for new designing
Speaker: Satyajit Ghosh
, University of Leeds, U.K.
Abstract:
The Indus Valley civilization flourished between 27501900 B.C. We present
a case study for Lothal, an extension of the Indus Valley civilization currently
located in the state of Gujarat in India. Their double storied buildings were clustered around
geometrical grids comprising of three divisions, including a citadel, a middle town
and a lower town. An onsite visit revealed that the buildings were suitably oriented for
maximum solar gains. The standardised stone blocks used had thermal transmissivities
("U" values in today's architectural parlance) that retained indoor coolth substantially.
The rectangular building forms ensured the presence of active and passive zones even then.
As Mechanical engineers, we have used Autodesk Ecotect Analysis to
calculate Daylight Factors, Solar Radiation and Water Usage. We have explored quantitatively
the fascinating world of light and shadows, coolth and warmth, and obtained
answers for the following questions:
1. Were the orientation and the clustering perfect in the city of Lothal?
2. Can these architectural designs prevail with some modifications in
today's times? After all, modernists believe that vernacular architecture can also be
sustainable.
3. How feasible is it to use engineered ecofabrics in modern settlements
(keeping in mind the versatility of traditional fabrics)?
In this paper we shall present a prototype of a new proposed city called
"The Sanctuary" housing 40,000 inhabitants (possibly the population in Lothal in 2500
B.C.). Our analysis shows how architectural structures adapt to driving rain, the ingress of
winds and a glaring sun. Ecotect calculations elucidate contrasting patterns of energy
use in residential areas of Lothal visavis the dwellings in The Sanctuary. To
our knowledge, this is a first study exploring energy efficiency in Lothal.

 21052012

 Floating orbits around rotating black holes and imprints of massive scalars
Speaker: Sayan Chakrabarti, Instituto Superior Tecnico, Lisbon, Portugal.
Abstract:
In this talk I plan to discuss the coupling of massive scalar
fields to matter in orbit around rotating black holes. It is generally
expected that orbiting bodies will lose energy in gravitational waves,
slowly inspiralling into the black hole. Instead, we show that the
coupling of the field to matter leads to a surprising effect: because of
superradiance, matter can hover into "floating orbits" for which the net
gravitational energy loss at infinity is entirely provided by the black
hole's rotational energy. Orbiting bodies remain floating until they
extract sufficient angular momentum from the black hole, or until
perturbations or nonlinear effects disrupt the orbit.

 15052012

 Zero discordness of initial systemenvironment correlation versus
complete positivity of the dynamical map of the system
Speaker: Sibasish Ghosh, The Institute of Mathematical Sciences, India
Abstract:
For more than three decades, the scaling theory of localization asserted that a two dimensional (2D) system of quantum particles
with even infinitesimal disorder cannot have a metallic state : it will always be localized. When recent experiments uncovered a metalinsulator transition (MIT)
in twodimensional electron gases in highmobility semiconductor heterostructures, this view was challenged. However, whether a true MIT exists as
a quantum phase transition in these systems is still controversial. We have used extensive Quantum Monte Carlo (QMC) simulations to show that, in a
related model (the AndersonHubbard model in two dimensions) a quantum phase transition exists between a metallic state and an Andersonlocalized state.
We will also discuss the possible nature of this metallic state, connect this transition with the superconductorinsulator transition (SIT) in 2D, and discuss surprising
magnetic properties of a 2D fermionic system when both interaction.

 10.05.2012

 Presence of Quantum diffusion in two dimensions : effect of interparticle interactions on Anderson localization
Speaker: Prabuddha Chakraborty, ISI, Chennai
Abstract
Quantum systems are quite fragile 
they often interact with their respective environments, which eventually
leads to nonunitary dynamics of the states of the systems. Although this
dynamics is nonunitary, it can be realized as a unitary dynamics of the
system and its environment together and thereby ignoring the environmental
degrees of freedom. In this way of realization, the nonunitary dynamics
is guaranteed to be a physical evolution (i.e., a completely positive map)
allowed by the rules of Quantum Mechanics if the initial joint state is taken
to be the tensor product of any state of the system and a fixed state of the
environment. In recent years, there has been a growing interest in relaxing the initial
correlation between the system and the environment to the extent where the nonunitary
dynamical map would still remain completely positive (CP), and the zero discordness of
the initial correlation has been proposed to be the characterising feature for the CPness
of the dynamical map. We argue in this paper that for the CPness of the dynamical map, the
aforesaid product structure of the initial correlation is inevitable.

27.04.2012

 Scattering of water waves by a thin elastic vertical plate
Speaker: Rumpa Chakraborty, ISI, Kolkata
Abstract
The problem of scattering of water waves by a thin elastic vertical plate
either partially immersed or completely submerged in infinitely deep
water or in finite depth water, is investigated here. Within the framework
of linearised theory of water waves. The boundary condition on the elastic
plate is derived from the BernoulliEuler equation of motion of the plate
and is given as the normal velocity on the plate to be prescribed in terms
of an integral involving the difference of potentials describing the
motion in the two sides of the plate, multiplied by an approximate Green's
function. The two ends of the barrier may be clamped or free, and the end
conditions play a crucial role in the construction of the Green's function.
The reflection and transmission coefficients are obtained in terms of
integrals involving three unknown functions satisfying two Fredholm
integral equations. The integral equations are solved by the Nystrom method
and the numerical values of the reflection and transmission coefficients
are depicted graphically in a number of figures.

