Binary Decision Diagrams (BDD)
Contents

- Motivation for Decision diagrams
- Binary Decision Diagrams
- ROBDD
- Effect of Variable Ordering on BDD size
- BDD operations
- Encoding state machines
- Reachability Analysis using OBDDs
Truth Table

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Decision Structure

- Vertex represents decision
- Follow green (dashed) line for value 0
- Follow red (solid) line for value 1
- Function value determined by leaf value.
Binary Decision Diagram

- DAG representation of Boolean functions

- Operations on Boolean functions can be implemented as graph algorithms on BDDs

- Tasks in many problem domains can be expressed entirely in terms of BDDs

- BDDs have been useful in solving problems that would not be possible by more traditional techniques.
Binary Decision Diagram (BDD)

- Each non-terminal vertex \(v \) is labeled by a variable \(\text{var}(v) \) and has arcs directed toward two children
 - \(\text{lo}(v) \) (dotted line) corresponding to the case where the variable is assigned 0
 - \(\text{hi}(v) \) (solid line) where the variable is assigned 1

- Each terminal vertex is labeled as 0 or 1

- For a given assignment to the variables, the value of the function is determined by tracing the path from root to a terminal vertex, following the branches appropriately
BDDs and Shannon’s Expansion

- **Shannon’s Expansion:** \(f = xf_x + x'f_{x'} \)

- BDD represents recursive application of Shannon’s expansion
Ordered Binary Decision Diagram (OBDD)

- Assign arbitrary total ordering to variables
 - e.g. $x_1 < x_2 < x_3$
- Variables must appear in ascending order along all paths

Properties
- No conflicting variable assignments along path
- Simplifies manipulation

Diagrams:
- OK: $x_1 < x_2 < x_3$
- Not OK: $x_3 < x_2 < x_1$
Reduction Rule #1

Merge equivalent leaves

Eliminate all but one terminal vertex with a given label and redirect all arcs into the eliminated vertices to the remaining
Reduction Rule #2

If non-terminal vertices u and v have var(u) = var(v), lo(u) = lo(v) and hi(u) = hi(v), eliminate one of them and redirect all incoming arcs to the other.

Merge isomorphic nodes
Eliminate Redundant Tests

If non-terminal vertex v has $lo(v) = hi(v)$, eliminate v and redirect all incoming arcs to $lo(v)$.

Reduction Rule #3
Reduced OBDD (ROBDD)

- Canonical representation of Boolean function
- For the same variable ordering, two functions equivalent if and only if graphs isomorphic
 - Can be tested in linear time

\[(x_1 + x_2) \cdot x_3\]
Some Example Functions

Constants

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Unique unsatisfiable function</td>
</tr>
<tr>
<td>1</td>
<td>Unique tautology</td>
</tr>
</tbody>
</table>

Typical Function

- \((x_1 \lor x_2) \land x_4\)
- No vertex labeled \(x_3\)
 - independent of \(x_3\)
- Many subgraphs shared

Variable

Treat variable as function

Odd Parity

- Linear representation

Typical Function

- \((x_1 \lor x_2) \land x_4\)
- No vertex labeled \(x_3\)
 - independent of \(x_3\)
- Many subgraphs shared
Circuit Functions

- **Functions**
 - All outputs of 4-bit adder
 - Functions of data inputs

- **Shared Representation**
 - Graph with multiple roots
 - 31 nodes for 4-bit adder
 - 571 nodes for 64-bit adder
 - Linear Growth
Effect of Variable Ordering on ROBDD Size

\[(a_1 \land b_1) \lor (a_2 \land b_2) \lor (a_3 \land b_3)\]

Good Ordering
\[(a_1 < b_1 < a_2 < b_2 < a_3 < b_3)\]

Bad Ordering
\[(a_1 < a_2 < a_3 < b_1 < b_2 < b_3)\]

Linear Growth

Exponential Growth
Analysis of Ordering Example

\[(a_1 \land b_1) \lor (a_2 \land b_2) \lor (a_3 \land b_3)\]
Selecting a good Variable Ordering

- **Intractable Problem**
 - Even when problem represented as OBDD

- **A good variable ordering should use**
 - Local computability
 - Ordering based on power to control output

- **Application-Based Heuristics**
 - Exploit characteristics of application
 - Ordering for functions of combinational circuit
 - Traverse circuit graph depth-first from outputs to inputs
 - Assign variables to primary inputs in order encountered
Dynamic Variable Ordering

- Rudell, ICCAD ‘93

Concept
- Variable ordering changes as computation progresses
 - Typical application involves long series of BDD operations
- Proceeds in background, invisible to user

Implementation
- When approach memory limit, attempt to reduce
 - Garbage collect unneeded nodes
 - Attempt to find better order for variables
- Simple, greedy reordering heuristics
Dynamic Reordering By Sifting

- Choose candidate variable
- Try all positions in ordering
 - Repeatedly swap with adjacent variable
- Move to best position found

Best Choices
Sample Function Classes

<table>
<thead>
<tr>
<th>Function Class</th>
<th>Best</th>
<th>Worst</th>
<th>Ordering Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALU (Add/Sub)</td>
<td>linear</td>
<td>exponential</td>
<td>High</td>
</tr>
<tr>
<td>Symmetric</td>
<td>linear</td>
<td>quadratic</td>
<td>None</td>
</tr>
<tr>
<td>Multiplication</td>
<td>exponential</td>
<td>exponential</td>
<td>Low</td>
</tr>
</tbody>
</table>

General Experience

- Many tasks have reasonable OBDD representations
- Algorithms remain practical for up to 100,000 node OBDDs
- Heuristic ordering methods generally satisfactory
BDD Operations

Strategy
- Represent data as set of OBDDs
 - Identical variable orderings
- Express solution method as sequence of symbolic operations
- Implement each operation by OBDD manipulation

Algorithmic Properties
- Arguments are OBDDs with identical variable orderings.
- Result is OBDD with same ordering.
- “Closure Property”
The APPLY Operation

- Given argument functions f and g, and a binary operator \(<op>\), APPLY returns the function \(f \,<op>,\, g\).

- Works by traversing the argument graphs depth first.

- Algebraic operations “commute” with the Shannon expansion for any variable \(x\):
 \[
 f \,<op>,\, g = x' (f|_{x=0} <op> g|_{x=0}) + x ((f|_{x=1} <op> g|_{x=1})
 \]
The Apply Algorithm

- Consider a function f represented by a BDD with root vertex r_f

- The restriction of f with respect to a variable x such that $x \leq \text{var}(r_f)$ can be computed as:

 $$ f \mid_{x = b} = \begin{cases} r_f, & x < \text{var}(r_f) \\ \text{lo}(r_f), & x = \text{var}(r_f) \text{ and } b = 0 \\ \text{hi}(r_f), & x = \text{var}(r_f) \text{ and } b = 1 \end{cases} $$

- The algorithm for APPLY utilizes the above restriction definition.
The Apply Algorithm

- Each evaluation step is identified by a vertex from each of the argument graphs.

- Suppose functions f and g are represented by root vertices r_f and r_g.

- If r_f and r_g are both terminal vertices, terminate and return an appropriately labeled terminal vertex e.g. (A_4, B_3) and (A_5, B_4).
The Apply algorithm

- Let x be the splitting variable
 \[x = \min(\text{var}(r_f), \text{var}(r_g)) \]

- BDDs for $(f|_{x=0} \ <op> \ g|_{x=0})$ and $(f|_{x=1} \ <op> \ g|_{x=1})$ are computed by recursively evaluating the restrictions of f and g for value 0 and for value 1.
Initial evaluation with vertices A_1, B_1 causes recursive evaluations with vertices A_2, B_2 and A_6, B_5.
Apply operation

- Reaching a terminal with a dominant value (e.g. 1 for OR, 0 for AND) terminates recursion and returns an appropriately labeled terminal (A₅, B₂ and A₃, B₄)

- Avoid multiple recursive calls on the same pair of arguments by a hash table (A₃, B₂ and A₅, B₂)
Apply operation

- Each evaluation step returns a vertex in the generated graph

- Apply reduction before merging the result

- Complexity of operation: $O(m_f \times m_g)$ where m_f and m_g represent the number of vertices in the BDDs for f and g respectively
Example

Recursive Calls

Without Reduction

With Reduction
Restrict Operation

- **Concept**
 - Effect of setting function argument x_i to constant k (0 or 1).
 - Also called Cofactor operation

$$F_x \text{ equivalent to } F[x = 1]$$
$$F_{\overline{x}} \text{ equivalent to } F[x = 0]$$
Restriction Algorithm

Implementation

- Depth-first traversal
- Redirect any arc into vertex v having var(v) = x to point to hi(v) for x = 1 and lo(v) for x = 0
- Complexity linear in argument graph size
Restriction Execution Example

Argument F

Restriction $F[b=1]$

Reduced Result
Derived Operations

- Express as combination of **Apply** and **Restrict**

- **Preserve closure property**
 - Result is an OBDD with the right variable ordering

- **Polynomial complexity**
 - Although can sometimes improve with special implementations
Variable Quantification

- Eliminate dependency on some argument through quantification
- Combine with AND for universal quantification.
Digital Applications of BDDs

- **Verification**
 - Combinational equivalence (UCB, Fujitsu, Synopsys, ...)
 - FSM equivalence (Bull, UCB, MCC, Colorado, Torino, ...)
 - Symbolic Simulation (CMU, Utah)
 - Symbolic Model Checking (CMU, Bull, Motorola, ...)

- **Synthesis**
 - Don’t care set representation (UCB, Fujitsu, ...)
 - State minimization (UCB)
 - Sum-of-Products minimization (UCB, Synopsys, NTT)

- **Test**
 - False path identification (TI)
Some Popular BDD packages

- **CUDD** (Colorado University Decision Diagram)
- **TUD BDD package** (TUDD)
- **BUDDY**
- **CMU BDD**

Informations about the above BDD packages and some more details can be found at http://www.bdd-portal.org/
What’s good about OBDDs?

- **Powerful Operations**
 - Creating, manipulating, testing
 - Each step polynomial complexity
 - Graceful degradation
 - Maintain “closure” property
 - Each operation produces form suitable for further operations

- **Generally Stay Small Enough**
 - Especially for digital circuit applications
 - Given good choice of variable ordering

- **Weak Competition**
What’s not good about OBDDs?

- **Doesn’t Solve All Problems**
 - Can’t do much with multipliers
 - Some problems just too big
 - Weak for search problems

- **Must be Careful**
 - Choose good variable ordering
 - Some operations too hard
Zero Suppressed BDD’s - ZBDD’s

- ZBDD’s were invented by Minato to efficiently represent sparse sets. They have turned out to be extremely useful in implicit methods for representing primes (which usually are a sparse subset of all cubes).

- Different reduction rules.
Zero Suppressed BDD’s - ZBDD’s

- ZBDD Reduction Rule: eliminate all nodes where the then node points to 0. Connect incoming edges to else node.

- For ZBDD, equivalent nodes can be shared as in case of BDDs.
Evaluating a MTBDD for a given variable assignment is similar to that in case of BDD.

Very inefficient for representing functions yielding values over a large range.
EVBDDs can be used when the number of possible function values are too high for MTBDDs.

Evaluating a EVBDD involves tracing a path determined by the variable assignment, summing the weights and the terminal node value.
BMD (Binary Moment Diagrams)

- **Features**
 - Used for Word level simulation/verification
 - Canonical
 - Based on linear decomposition of a function

- **Functional Decomposition**:

 \[f = (1-x) f_{\neg x} + (x) f_x \]

 \[= f_{\neg x} + x (f_x - f_{\neg x}) \]

 \[= f_{\neg x} + x (f_{.x}) \]

 where \(f_{.x} \) is the linear moment w.r.t. \(x \)
Representing *BMDs

Graph:

- Example

\[
f = (1-x_1)(1-x_2)(8) + (1-x_1)(x_2)(-12) + (x_1)(1-x_2)(10) + (x_1)(x_2)(-6)
= 8 - 20x_2 + 2x_1 + 4x_1x_2
\]

<table>
<thead>
<tr>
<th>x₁</th>
<th>x₂</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>-12</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>-6</td>
</tr>
</tbody>
</table>
Edge Weights (*BMDs)

Weights combine multiplicatively along path from root to leaf Rules :

- weights of 2 branches relatively prime
- weight 0 allowed only for terminal vertices
- if one edge has weight 0, the other has weight 1
References
