An Image Processing Algorithm Based on FMAT

Lyndon B. Johnson Space Center, Houston, Texas

The problem of extracting medial axis transformation (MAT) and skeleton (or thinning) plays a key role in image processing, analysis, and recognition because of the simplicity of image (and hence object) representation they allow. There has been extensive research done in extracting the medial axis of a region and skeleton of elongated objects from a two-tone image.

The present work proposes a new gray-scale generalization of MAT, called FMAT (short for Fuzzy MAT). It is formulated by making a natural extension to fuzzy-set theory of all the definitions and conditions (e.g., characteristic function of a disk, subset condition of a disk, and redundancy checking) used in defining a MAT of a crisp set. As a result, it does not need the image to have any kind of a priori segmentation, and it allows the medial axis (and skeleton) to be a fuzzy subset of the input image. The resulting FMAT (consisting of maximal fuzzy disks) is capable of reconstructing exactly the original image.

An attempt of obtaining an optimum FMAT for making the image MAT representation more economical is also made by maximizing compactness of the FMAT output with various cuts. Such an optimum version keeps only those medial-axis pixels that are responsible for object regions of interest while ignoring the rest. This can also be regarded as an optimum (in the sense of minimizing spatial ambiguity) fuzzy skeleton of an image.

This work was done by Liu Wang of Johnson Space Center and Sankar K. Pal of the National Academy of Sciences. For further information, write in 12 on the TSP Request Card.

This invention is owned by NASA, and a patent application has been filed. Inquiries concerning nonexclusive or exclusive license for its commercial development should be addressed to the Patent Counsel, Johnson Space Center [see page 20] MSC-21997.

The Original Image of 60 x 36 pixels and 32 gray levels is converted to a reduced-redundancy FMAT (RFMAT), then reconstructed from the RFMAT.

For More Information Write In No. 483

A Graphite/Metal Alloy to solve your bearing problems in hostile environments:
- Corrosive liquids and vapors
- Cryogenic to high temperatures
- Wet or dry
Anywhere grease, oil, or plastics are failing. You benefit from:
- Reduced maintenance
- Superior performance...
in equipment like pumps, ovens, mixers, screens, dampers, valves, plating and coating tanks,...
What's YOUR bearing problem?
We have solutions for you! Call us!

GRAPHITE METALLIZING CORPORATION
1050 Nepperhan Avenue, P.O. Box 110, YONKERS, NY 10702 U.S.A.
Tel: 914-968-8400 - FAX: 914-968-8468

For More Information Write In No. 453

Questions about Pressure Control?

Talk to the problem solvers for a wide range of pressure regulators and valves—for gas and liquid control from subatmospheric to 15,000 PSIG.
Over 50 standard models + options
- Choices include materials, pressure ranges, port types and flow capacities (Cv 0.01 to 15).
- Pressure reducing, back pressure, dome loaded, two-stage and electronically controlled styles do the job in high purity, hydraulic, high pressure, vacuum and vaporizing applications.

An ISO 9001 System Certified Company
TESCOM CORPORATION
12616 Industrial Blvd.
Oak Brook, IL 60523
612-441-6330

For More Information Write In No. 425

For More Information Write In No. 483

An Image Processing Algorithm Based on FMAT

Information is deleted in ways that minimize adverse effects on reconstructed images.

Lyndon B. Johnson Space Center, Houston, Texas

The problem of extracting medial axis transformation (MAT) and skeleton (or thinning) plays a key role in image processing, analysis, and recognition because of the simplicity of image (and hence object) representation they allow. There has been extensive research done in extracting the medial axis of a region and skeleton of elongated objects from a two-tone image.

The present work proposes a new gray-scale generalization of MAT, called FMAT (short for Fuzzy MAT). It is formulated by making a natural extension to fuzzy-set theory of all the definitions and conditions (e.g., characteristic function of a disk, subset condition of a disk, and redundancy checking) used in defining a MAT of a crisp set. As a result, it does not need the image to have any kind of a priori segmentation, and it allows the medial axis (and skeleton) to be a fuzzy subset of the input image. The resulting FMAT (consisting of maximal fuzzy disks) is capable of reconstructing exactly the original image.

An attempt of obtaining an optimum FMAT for making the image MAT representation more economical is also made by maximizing compactness of the FMAT output with various cuts. Such an optimum version keeps only those medial-axis pixels that are responsible for object regions of interest while ignoring the rest. This can also be regarded as an optimum (in the sense of minimizing spatial ambiguity) fuzzy skeleton of an image.

This work was done by Liu Wang of Johnson Space Center and Sankar K. Pal of the National Academy of Sciences. For further information, write in 12 on the TSP Request Card.

This invention is owned by NASA, and a patent application has been filed. Inquiries concerning nonexclusive or exclusive license for its commercial development should be addressed to the Patent Counsel, Johnson Space Center [see page 20] MSC-21997.

The Original Image of 60 x 36 pixels and 32 gray levels is converted to a reduced-redundancy FMAT (RFMAT), then reconstructed from the RFMAT.