Journals (published/accepted)
  1. D. Sinha, D. Sengupta and S. Bandyopadhyay, "ParSel: Parallel Selection of Micro-RNAs for Survival Classi cation in Cancers", Molecular Informatics, DOI:10.1002/minf.201600141, 2017 (accepted)
  2. S. Bandyopadhyay and K Mallick, "A new feature vector based on Gene Ontology terms for protein-protein interaction prediction",IEEE/ACM Transactions on Computational Biology and Bioinformatics, doi 10.1109/TCBB.2016.2555304, 2017 (accepted).
  3. M. Bhattacharyya, S. Maity and S. Bandyopadhyay, "Exploring the Missing Links Between Dietary Habits and Diseases", IEEE Transactions on NanoBioscience (accepted).
  4. S. Malllik and S. Bandyopadhyay, "Integrating Multiple Data Sources for Combinatorial Marker Discovery: A Study in Tumorigenesis", IEEE Transactions on Computational Biology and Bioinformatics (accepted).
  5. D. Sengupta, S. Bandyopadhyay and D. Sinha, "A Scoring Scheme for Online Feature Selection: Simulating Model Performance Without Retraining", IEEE Transactions on Neural Networks and Learning Systems, vol. 28. no. 2. pp. 405-414, Feb 2017.
  6. S. Joardar, A. Chatterjee, S. Bandyopadhyay and U. Maulik, \Multi-size Patch based Collaborative Representation for Palm Dorsa Vein Pattern Recognition by Enhanced Ensemble Learning with Modi ed Interactive Arti cial Bee Colony Algorithm",Engineering Applica- tions of Arti cial Intelligence, Elsevier, vol. 60, pp. 151-163, 2017.
  7. S. Ray and S. Bandyopadhyay, \Discovering Condition Speci c Topological Pattern Changes in Coexpression Network: An Application to HIV1 Progression", IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol.13, no. 6, pp. 1086-1099, 2016.
  8. M. Bhattacharyya, J. Nath and S. Bandyopadhyay, \Identifying Signi cant microRNAmRNA Pairs Associated with Breast Cancer Subtypes" Molecular Biology Reports, vol. 43, no. 7, pp. 591-599, DOI: 10.1007/s11033-016-4021-z, 2016.
  9. S. Ray, and S. Bandyopadhyay, \NMF Based Approach for Integrating Multiple Data Sources to Predict HIV-1-human PPIs BMC Bioinformatics, 17: 121, doi: 10.1186/s12859-016- 0952-6, 2016.
  10. A. Mukhopadhyay, U. Maulik and S. Bandyopadhyay, \A Survey of Evolutionary Multiobjective Clustering"ACM Computing Surveys, vol. 47, Iss. 4, Article No. 61, 2015.
  11. S. Acharya, S. Saha and S. Bandyopadhyay, "Use of Line Based Symmetry for Developing Cluster Validity Indices", Soft Computing, Volume 20, Number 9, Pages 34613474 (2016), doi:10.1007/s00500-015-1848-5.
  12. D. Sengupta, I. Aich, and S. Bandyopadhyay. " Feature Selection Using Feature Dissimilarity Measure and DensityBbased Clustering: Application to Biological Data", Journal of Biosciences, vol. 40, no. 4 , pp. 721-730, 2015.
  13. S. Saha, R. Spandana, A. Ekbal, and S. Bandyopadhyay, " Simultaneous Feature Selection and Symmetry Based Clustering Using Multiobjective Framework", Applied Soft Computing, vol. 29, pp. 479-486, 2015.
  14. S. Bandyopadhyay, D. Ghosh, R. Mitra and Z. Zhao, " MBSTAR: Multiple Instance Learning for Predicting Speci c Functional Binding sites in microRNA targets", Scienti c Reports (Nature Publishing Group), 5, Article number: 8004, doi:10.1038/srep08004, 2015.
  15. M. Aqil, S. Mallik, S. Bandyopadhyay, U. Maulik and S. Jameel, " Transcriptomic Analysis of mRNAs in Human Monocytic Cells Expressing the HIV-1 Nef Protein and Their Exosomes", BioMed Research International, vol. 2015, article id: 492395, pp. 1-10, 2015.



Adress : Machine Intelligence Unit
Indian Statistical Institute
203 B. T. Road, Kolkata 700108

West Bengal, India

E-mail :    sanghami [at] isical [dot] ac [dot] in

Phone :     91 33 2575 3114 (office)
                  91 33 2646 7081 (home)